function [ gd ] = gsp_design_can_dual( g ,tol)
%GSP_DESIGN_CAN_DUAL This function return the canonical dual filters of g
% Usage: gd = gsp_design_can_dual( g );
%
% Inputs parameters:
% g : cell array of filters
% tol : tolerance for the pseudo-inverse
%
% Ouputs parameters:
% g : cell array of filters
%
% This function returns the canonical dual filterbank g. Note that it
% might not be the be the optimal solution in term of computation.
%
% Example:
%
% N = 100;
% G = gsp_sensor(N);
% G = gsp_compute_fourier_basis(G);
% g = gsp_design_abspline(G,8);
% gd = gsp_design_can_dual(g);
% paramplot.show_sum = 0;
% figure(1)
% gsp_plot_filter(G,g,paramplot);
% title('Original filters')
% figure(2)
% gsp_plot_filter(G,gd,paramplot);
% title('Canonical dual filters');
%
% x = rand(N,1);
% param.method = 'exact';
% coeff = gsp_filter_analysis(G,g,x,param);
% xs = gsp_filter_synthesis(G,gd,coeff,param);
% norm(xs-x)
%
% See also: gsp_evaluate_can_dual
%
% Url: https://epfl-lts2.github.io/gspbox-html/doc/filters/gsp_design_can_dual.html
% Copyright (C) 2013-2016 Nathanael Perraudin, Johan Paratte, David I Shuman.
% This file is part of GSPbox version 0.7.5
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% If you use this toolbox please kindly cite
% N. Perraudin, J. Paratte, D. Shuman, V. Kalofolias, P. Vandergheynst,
% and D. K. Hammond. GSPBOX: A toolbox for signal processing on graphs.
% ArXiv e-prints, Aug. 2014.
% http://arxiv.org/abs/1408.5781
% Author: Nathanael Perraudin
% Date : 30 December 2014
% Testing: test_dual
if nargin<2
tol = 1e-8;
end
Nf = length(g);
gd = cell(Nf,1);
for ii = 1:Nf
gd{ii} = @(x) can_dual(g,ii,x,tol);
end
end
function ret = can_dual(g,n,x,tol)
[N1, N2] = size(x);
x = x(:);
sol = gsp_evaluate_can_dual( g,x,tol );
ret = sol(:,n);
ret = reshape(ret,N1,N2);
end