This is where navigation should be.


GSP_DESIGN_HEAT - Design a simple heat kernel

Usage

gsp_design_heat(G);
gsp_design_heat(G,tau);
gsp_design_heat(G,tau,param);

Input parameters

G Graph structure
tau scaling parameter (default 10)

Output parameters

g filter

Description

This function design the following filter:

\begin{equation*} g(x) = e^{-\tau \frac{x}{\lambda_{\text{max}}}} \end{equation*}

If tau is a vector, the function returns a cell array of filters.

param is an optional structure containing the following fields

  • param.verbose: verbosity level. 0 no log - 1 display warnings. (default 1)
  • param.normalize: Normalize the kernel (works only if the eigenvalues are present in the graph. Use gsp_compute_fourier_basis for this.) (default 0)

This function will compute the maximum eigenvalue of the laplacian. To be more efficient, you can precompute it using:

G = gsp_estimate_lmax(G);

Example:

Nf = 4;
G = gsp_sensor(100);
G = gsp_estimate_lmax(G);
g = gsp_design_heat(G);
gsp_plot_filter(G,g);
gsp_design_heat_1_1.png