This is where navigation should be.


GSP_DESIGN_REGULAR - Create a regular filterbank

Usage

g = gsp_design_regular( G );
g = gsp_design_regular( G, param );

Description

Inputs parameters:
G : Graph structure or lmax param : Structure of optional parameters
Outputs parameters:
g : filterbank

This function creates a parseval filterbank of \(2\) filters. The low-pass filter is defined by a function \(f_l(x)\) between \(0\) and \(2\). For \(d = 0\).

\begin{equation*} f_{l}= \sin\left( \frac{\pi}{4} x \right) \end{equation*}

For \(d = 1\)

\begin{equation*} f_{l}= \sin\left( \frac{\pi}{4} \left( 1+ \sin\left(\frac{\pi}{2}(x-1)\right) \right) \right) \end{equation*}

For \(d = 2\)

\begin{equation*} f_{l}= \sin\left( \frac{\pi}{4} \left( 1+ \sin\left(\frac{\pi}{2} \sin\left(\frac{\pi}{2}(x-1)\right)\right) \right) \right) \end{equation*}

And so on for the other degrees \(d\).

The high pass filter is adapted to obtain a tight frame.

This function will compute the maximum eigenvalue of the laplacian. To be more efficient, you can precompute it using:

G = gsp_estimate_lmax(G);

Example:

G = gsp_sensor(100);
G = gsp_estimate_lmax(G);
g = gsp_design_regular(G);
gsp_plot_filter(G,g);
[A,B] = gsp_filterbank_bounds(G,g)

This code produces the following output:

A =

    1.0000


B =

    1.0000
gsp_design_regular_1_1.png

param is an optional structure containing the following fields

  • param.verbose: verbosity level. 0 no log - 1 display warnings. (default 1)
  • param.d: Degree. See equation for mor informations. (default 3)