This is where navigation should be.


GSP_FILTER_SYNTHESIS - Synthesis operator of a gsp filterbank

Usage

s = gsp_filter_synthesis(G, filters, c);
s = gsp_filter_synthesis(G, filters, c, param);

Input parameters

G Graph structure.
filters Set of spectral graph filters.
c Transform coefficients
param Optional parameter

Output parameters

signal sythesis signal

Description

'gsp_filter_synthesis(G,filters,c)' computes the synthesis operator for coefficient \(c\), where the atoms of the transform dictionary are generalized translations of each graph spectral filter to each vertex on the graph.

\begin{equation*} f = D c \end{equation*}

where the columns of \(D\) are \(g_{i,m}=T_i g_m\), and \(T_i\) is a generalized translation operator applied to each filter \(\hat{g}_m(\cdot)\).

Each column of c is the response of the signal to one filter.

Example:

Nf = 4;
G = gsp_sensor(30);
G = gsp_estimate_lmax(G);
G = gsp_estimate_lmax(G);
g = gsp_design_mexican_hat(G, Nf);
f = zeros(G.N,1);
f(1) = 1;
f = G.L^2*f;
ff = gsp_filter_analysis(G,g,f);
f2 = gsp_filter_synthesis(G,g,ff);
paramplot.show_edges = 1;
figure()
subplot(211)
gsp_plot_filter(G,g)
subplot(223)
gsp_plot_signal(G,f,paramplot);
subplot(224)
gsp_plot_signal(G,f2,paramplot);
gsp_filter_synthesis_1_1.png

Additional parameters

  • param.method : Select the method to be used for the computation. * 'exact' : Exact method using the graph Fourier matrix * 'cheby' : Chebyshev polynomial approximation * 'lanczos' : Lanczos approximation Default: if the Fourier matrix is present: 'exact' otherwise 'cheby'
  • param.order : Degree of the Chebyshev approximation (default=30).
  • param.verbose : Verbosity level (0 no log - 1 display warnings) (default 1).

References:

D. K. Hammond, P. Vandergheynst, and R. Gribonval. Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal., 30(2):129--150, Mar. 2011.