function [ G ] = gsp_full_connected( N )
%GSP_FULL_CONNECTED Create a fully connected graph
% Usage: G = gsp_full_connected(N);
% G = gsp_full_connected();
%
% Input parameters:
% N : Number of vertices (default 10)
% Output parameters:
% G : Graph structure.
%
% 'gsp_full_connected(N)' initializes a graph structure representing a
% fully connected graph. All weight are set to 1.
%
% Example:
%
% G = gsp_full_connected(5);
% param.show_edges = 1;
% gsp_plot_graph(G,param);
%
% See also: gsp_ring
%
% Url: https://epfl-lts2.github.io/gspbox-html/doc/graphs/gsp_full_connected.html
% Copyright (C) 2013-2016 Nathanael Perraudin, Johan Paratte, David I Shuman.
% This file is part of GSPbox version 0.7.5
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% If you use this toolbox please kindly cite
% N. Perraudin, J. Paratte, D. Shuman, V. Kalofolias, P. Vandergheynst,
% and D. K. Hammond. GSPBOX: A toolbox for signal processing on graphs.
% ArXiv e-prints, Aug. 2014.
% http://arxiv.org/abs/1408.5781
G.N = N;
W = ones(N);
W = W-diag(diag(W));
G.W = W;
% Create coordinates
G.coords = [(cos((0:N-1)*(2*pi)/N))',(sin((0:N-1)*(2*pi)/N))'];
G.plotting.limits = [-1,1,-1,1];
G.type = 'full';
G = gsp_graph_default_parameters(G);
end