function [G]=gsp_ring(N,k)
%GSP_RING Initialize a ring graph
% Usage: G = gsp_ring(N);
% G = gsp_ring(N,k);
% G = gsp_ring();
%
% Input parameters:
% N : Number of vertices. (default 64)
% k : Number of neighbors in each direction (default 1)
% Output parameters:
% G : Graph structure.
%
% 'gsp_ring(N)' initializes a graph structure containing
% the weighted adjacency matrix (G.W), the number of vertices (G.N), the
% plotting coordinates (G.coords), and the plotting coordinate limits
% (G.coord_limits) of a ring graph with N vertices. Each vertex in the
% ring has 2k neighbors (maximum value of k is N/2). The edge
% weights are all equal to 1.
%
% Example:
%
% G = gsp_ring(64);
% param.show_edges = 1;
% gsp_plot_graph(G,param);
%
%
% Url: https://epfl-lts2.github.io/gspbox-html/doc/graphs/gsp_ring.html
% Copyright (C) 2013-2016 Nathanael Perraudin, Johan Paratte, David I Shuman.
% This file is part of GSPbox version 0.7.5
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% If you use this toolbox please kindly cite
% N. Perraudin, J. Paratte, D. Shuman, V. Kalofolias, P. Vandergheynst,
% and D. K. Hammond. GSPBOX: A toolbox for signal processing on graphs.
% ArXiv e-prints, Aug. 2014.
% http://arxiv.org/abs/1408.5781
% Author : David I Shuman, Nathanael Perraudin
if nargin < 1
N = 64;
end
if nargin < 2
k = 1;
end
G.N=N;
if k>N/2
error('Too many neighbors requested');
end
% Create weighted adjancency matrix
if k==N/2
num_edges=N*(k-1)+N/2;
else
num_edges=N*k;
end
i_inds=zeros(1,2*num_edges);
j_inds=zeros(1,2*num_edges);
all_inds=1:N;
for i=1:min(k,floor((N-1)/2))
i_inds((i-1)*2*N+1:(i-1)*2*N+N)=all_inds;
j_inds((i-1)*2*N+1:(i-1)*2*N+N)=1+mod(all_inds-1+i,N);
i_inds((i-1)*2*N+N+1:i*2*N)=1+mod(all_inds-1+i,N);
j_inds((i-1)*2*N+N+1:i*2*N)=all_inds;
end
if k==N/2
i_inds(2*N*(k-1)+1:2*N*(k-1)+N)=all_inds;
j_inds(2*N*(k-1)+1:2*N*(k-1)+N)=1+mod(all_inds-1+k,N);
end
G.W=sparse(i_inds,j_inds,ones(1,length(i_inds)),N,N);
%TODO: rewrite G.W without for loops
% Create coordinates
G.coords=[(cos((0:N-1)*(2*pi)/N))',(sin((0:N-1)*(2*pi)/N))'];
G.plotting.limits=[-1,1,-1,1];
if k==1
G.type = 'ring';
else
G.type = 'k-ring';
end
G = gsp_graph_default_parameters(G);
end