function [G] = gsp_spiral(N,k,param)
%GSP_SPIRAL Initialize a spriral graph
% Usage: G = gsp_spiral();
% G = gsp_spiral(N);
% G = gsp_spiral(N,k);
% G = gsp_spiral(N, k, param);
%
% Input parameters:
% N : Number of vertices. (default 200)
% k : Number of turns (3)
% param : Structure of optional parameters
% Output parameters:
% G : Graph structure.
%
% 'gsp_spiral(N)' initializes a graph structure for the sprial graph.
%
% The optional parameters are:
% param.noise : Noise level (Default 5)
% param.start : Starting angle in degree (Default 90)
% param.k : Approximate number of connections per nodes (Default 4)
%
% Example:
%
% G = gsp_spiral(64);
% param.show_edges = 1;
% gsp_plot_graph(G,param);
%
%
% Url: https://epfl-lts2.github.io/gspbox-html/doc/graphs/gsp_spiral.html
% Copyright (C) 2013-2016 Nathanael Perraudin, Johan Paratte, David I Shuman.
% This file is part of GSPbox version 0.7.5
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% If you use this toolbox please kindly cite
% N. Perraudin, J. Paratte, D. Shuman, V. Kalofolias, P. Vandergheynst,
% and D. K. Hammond. GSPBOX: A toolbox for signal processing on graphs.
% ArXiv e-prints, Aug. 2014.
% http://arxiv.org/abs/1408.5781
% Author : Nathanael Perraudin
% Date : 11 December 2015
if nargin < 1
N = 200;
end
if nargin < 2
k = 3;
end
if nargin<3
param = struct;
end
if ~isfield(param,'noise'), param.noise = 5; end
if ~isfield(param,'start'), param.start = 90; end
if ~isfield(param,'K'), param.k = 4; end
deg2rad = (2*pi)/360;
start = param.start * deg2rad;
degrees = k*360;
n = start + sqrt(sort(rand(N,1))) * degrees * deg2rad;
coords = [cos(n).*n+rand(N,1)*param.noise, -sin(n).*n+rand(N,1)*param.noise];
paramnn.k = 6*param.k;
Gt = gsp_nn_graph(coords,paramnn);
% keeps only the good connections
W = Gt.W;
W( logical( triu(ones(N),param.k) + tril(ones(N),-param.k ) ) )= 0;
G.W = W;
% Create coordinates
G.coords = coords;
G.type = 'spiral';
G = gsp_graph_default_parameters(G);
end