function [G]=gsp_torus(N,M)
%GSP_TORUS Initialize a 2 dimentional grid graph
% Usage: G=gsp_path(N);
%
% Input parameters:
% N : Number of vertices along the first dimention (default 16)
% M : Number of vertices along the second dimention (default N)
% Output parameters:
% G : Graph structure.
%
% The 2dring graph correspond the graph used for the DFT2.
%
% Example:
%
% G = gsp_torus(16,20);
% param.show_edges = 1;
% gsp_plot_graph(G,param);
%
% See also: gsp_ring, gsp_path
%
% References:
% G. Strang. The discrete cosine transform. SIAM review, 41(1):135--147,
% 1999.
%
%
%
% Url: https://epfl-lts2.github.io/gspbox-html/doc/graphs/gsp_torus.html
% Copyright (C) 2013-2016 Nathanael Perraudin, Johan Paratte, David I Shuman.
% This file is part of GSPbox version 0.7.5
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% If you use this toolbox please kindly cite
% N. Perraudin, J. Paratte, D. Shuman, V. Kalofolias, P. Vandergheynst,
% and D. K. Hammond. GSPBOX: A toolbox for signal processing on graphs.
% ArXiv e-prints, Aug. 2014.
% http://arxiv.org/abs/1408.5781
% Author: Nathanael Perraudin
% Date: 15 March 2014
% Testing: test_graph
if nargin <1
N = 16;
end
if nargin < 2
M = N;
end
% Create weighted adjancency matrix
K = 2*N;
J = 2*M;
i_inds = zeros(K*M+J*N,1);
j_inds = zeros(K*M+J*N,1);
for ii = 1:M
i_inds((ii-1)*K+(1:K)) = (ii-1)*N+[N,1:(N-1),1:N]';
j_inds((ii-1)*K+(1:K)) = (ii-1)*N+[1:N,N,1:(N-1)]';
end
for ii = 1:M-1
i_inds(K*M+(ii-1)*2*N+(1:2*N)) = [((ii-1)*N+(1:N)),(ii*N+(1:N))]';
j_inds(K*M+(ii-1)*2*N+(1:2*N)) = [(ii*N+(1:N)),((ii-1)*N+(1:N))]';
end
i_inds(K*M+(M-1)*2*N+(1:2*N)) = [(1:N),((M-1)*N+(1:N))]';
j_inds(K*M+(M-1)*2*N+(1:2*N)) = [((M-1)*N+(1:N)),(1:N)]';
G.W = sparse(i_inds,j_inds,ones(K*M+J*N,1),N*M,N*M);
% Create coordinates
T = 1.5 + sin((0:M-1)*2*pi/M);
U = cos((0:M-1)*(2*pi)/M);
G.coords = [reshape((cos((0:N-1)*(2*pi)/N)'*T),M*N,1),...
reshape(sin((0:N-1)*(2*pi)/N)'*T,M*N,1),...
reshape(repmat(U,N,1),M*N,1)];
G.plotting.limits = [-2.5, 2.5, -2.5, 2.5, -2.5, 2.5];
G.type = 'torus';
G.plotting.vertex_size = 30;
G.directed = 0;
G = gsp_graph_default_parameters(G);
end