function di = gsp_div(G,s)
%GSP_DIV Graph divergence
% Usage: di = gsp_div(G,s)
%
% Input parameters:
% G : Graph structure
% s : Signal living on the edges
% Output parameters:
% di : Divergence
%
% The divergence operator is the adjoint of the gradient operator. For
% graphs, the divergence of a signal residing on edges gives a signal
% living on the nodes. The result should be such that:
%
% gsp_div(G,gsp_grad(G,s)) = G.L s,
%
% Before using this function, you need to call the function:
%
% G = gsp_adj2vec(G)
%
% See also: gsp_grad gsp_adj2vec
%
%
% Url: https://epfl-lts2.github.io/gspbox-html/doc/operators/gsp_div.html
% Copyright (C) 2013-2016 Nathanael Perraudin, Johan Paratte, David I Shuman.
% This file is part of GSPbox version 0.7.5
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% If you use this toolbox please kindly cite
% N. Perraudin, J. Paratte, D. Shuman, V. Kalofolias, P. Vandergheynst,
% and D. K. Hammond. GSPBOX: A toolbox for signal processing on graphs.
% ArXiv e-prints, Aug. 2014.
% http://arxiv.org/abs/1408.5781
% Author: Nathanael Perraudin, Vassilis Kalofolias
% Date : 5 August 2014
% Testing: test_operators
if size(s,1) ~= G.Ne
error('Signal size not equal to number of edges');
end
if ~isfield(G,'Diff')
warning(['GSP_DIV: To optimize speed, please run',...
' G = gsp_adj2vec(G) before this function']);
G = gsp_adj2vec(G);
end
di = G.Diff'*double(s);
if isa(s,'single')
di = single(di);
end
end
%% Old Vassilis comment
% Old Vassilis code
% k = size(s,2);
%
% % What happens with loops? (diagonal elements of G, A)
% %
% % I think both div and grad is zero on the diagonal elements. But then is
% % it consistent with the Laplacian? (it has to be div(grad(s)) = 2*L*s) for
% % a signal s defined on the vertices.
%
% div = zeros(G.N, k);
%
% for ii = 1 : k
% tmp = sparse(G.v_in, G.v_out, s(:,ii), G.N,G.N);
% tmp = tril(tmp,1) - tril(tmp,1)';
%
% % the divergence
% div(:,ii) = sum(tmp.* sqrt(G.W), 2);
% end
% div = GRAPH_DIV(S, A, ki, kj)
%
%Divergence of signal residing on edges of a graph. The output resides on
%nodes. The result should be such that
% graph_div(graph_grad(s)) = L * s,
%where L is the graph Laplacian associated with the adjacency matrix A.
%
%OUTPUT:
% div: divergence of columns of S defined on vertices
%
%INPUTS:
% S: signal defined on edges e
% A: adjacency matrix (weighted or not)
% ki, kj: indices of edges by graph_adj2vec
%
%
% TODO: does not handle normalized Laplacian case!!
%
%
%note that the norm of the operator is
%
% ||D||^2_2 = ||L||_2, where G is the divergence operator and L is the
% Laplacian used.
%
%
%see also: graph_grad, graph_adj2vec, sgwt_laplacian
%
%code author: Vassilis Kalofolias
%date: Aug 2013