function [f_hat]=gsp_gft(G,f)
%GSP_GFT Graph Fourier transform
% Usage: f_hat=gsp_gft(G,f);
%
% Input parameters:
% G : Graph or Fourier basis
% f : f (signal)
% Output parameters:
% f_hat : Graph Fourier transform of f*
%
% 'gsp_gft(G,f)' computes a graph Fourier transform of the signal f
% with respect to the Fourier basis of the graph G: G.U. Alternatively,
% one can provide directly the Fourier basis instead of the graph G.
%
% f_hat = U' * f
%
% To compute the Fourier basis of a graph G, you can use the function:
%
% G = gsp_compute_fourier_basis(G);
%
% Example:
%
% N = 30;
% G = gsp_sensor(N);
% G = gsp_compute_fourier_basis(G);
% f = sin((1:N)'*2*pi/N);
% fhat = gsp_gft(G,f);
% gsp_plot_signal_spectral(G,fhat);
%
% See also: gsp_igft, gsp_gwft, gsp_compute_fourier_basis
%
%
% Url: https://epfl-lts2.github.io/gspbox-html/doc/operators/gsp_gft.html
% Copyright (C) 2013-2016 Nathanael Perraudin, Johan Paratte, David I Shuman.
% This file is part of GSPbox version 0.7.5
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% If you use this toolbox please kindly cite
% N. Perraudin, J. Paratte, D. Shuman, V. Kalofolias, P. Vandergheynst,
% and D. K. Hammond. GSPBOX: A toolbox for signal processing on graphs.
% ArXiv e-prints, Aug. 2014.
% http://arxiv.org/abs/1408.5781
% Author : Nathanael Perraudin, David I Shuma
% Date:
s = size(f);
if ~isnumeric(G);
if ~gsp_check_fourier(G)
error(['GSP_GFT: You need first to compute the Fourier basis\n',...
'You can do it with the function gsp_compute_fourier_basis']);
end
%U = G.U;
f_hat=reshape(G.U'*reshape(f,G.N,[]),s);
else
%U = G;
f_hat=reshape(G'*reshape(f,G.N,[]),s);
end