function [ D ] = gsp_grad_mat( G )
%GSP_GRAD_MAT Gradient sparse matrix of the graph G
% Usage: D = gsp_gradient_mat(G);
%
% Input parameters:
% G : Graph structure
%
% Output parameters:
% D : Gradient sparse matrix
%
% This function return the gradient matrix. To be more effiecient, call
% the function:
%
% G = gsp_adj2vec(G)
%
% before this function.
%
% Example:
%
% N = 40;
% G = gsp_sensor(N);
% G = gsp_adj2vec(G);
% D = gsp_grad_mat(G);
%
%
% Url: https://epfl-lts2.github.io/gspbox-html/doc/operators/gsp_grad_mat.html
% Copyright (C) 2013-2016 Nathanael Perraudin, Johan Paratte, David I Shuman.
% This file is part of GSPbox version 0.7.5
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% If you use this toolbox please kindly cite
% N. Perraudin, J. Paratte, D. Shuman, V. Kalofolias, P. Vandergheynst,
% and D. K. Hammond. GSPBOX: A toolbox for signal processing on graphs.
% ArXiv e-prints, Aug. 2014.
% http://arxiv.org/abs/1408.5781
% Author: Nathanael Perraudin
% Date : 14 Mai 2014
% Testing: test_operators
if ~isfield(G,'v_in')
G = gsp_adj2vec(G);
warning(['GSP_GRADIENT_MAT: To be more efficient you should run: ',...
'G = gsp_adj2vec(G); before using this proximal operator.']);
end
% if isfield(G,'Diff');
% D = G.Diff;
% return;
% end
% In case the graph has logical in the weights matrix
G.weights = double(G.weights);
if strcmp(G.lap_type,'combinatorial')
n = G.Ne;
Dr = [1:n 1:n];
Dc(1:n) = G.v_in;
Dc(n+1:2*n) = G.v_out;
Dv(1:n) = sqrt(G.weights);
Dv(n+1:2*n) = -sqrt(G.weights);
elseif strcmp(G.lap_type,'normalized')
n = G.Ne;
Dr = [1:n 1:n];
Dc(1:n) = G.v_in;
Dc(n+1:2*n) = G.v_out;
Dv(1:n) = sqrt(G.weights./G.d(G.v_in));
Dv(n+1:2*n) = -sqrt(G.weights./G.d(G.v_out));
% [v_i, v_j, weights] = find(G.W);
% n = length(v_i);
% Dr = [1:n 1:n];
% Dc(1:n) = v_i;
% Dc(n+1:2*n) = v_j;
% Dv(1:n) = sqrt(weights./G.d(v_i));
% Dv(n+1:2*n) = -sqrt(weights./G.d(G.v_j));
else
error('Not implemented yet!')
end
D = sparse(Dr,Dc,Dv,n,G.N);
end