function [ C ] = gsp_gwft(G,g,f, param )
%GSP_GWFT Generalized windowed Fourier transform
% Usage: C = gsp_gwft(G,g,f, param );
% C = gsp_gwft(G,g,f);
%
% Input parameters:
% G : Graph
% g : Window (graph signal or kernel)
% f : Graph signal (column vector)
% param : Structure of optional parameter
% Output parameters:
% C : Coefficient.
%
% This function compute the graph windowed Fourier transform of a signal
% f with the window g. The function returns a matrix of size N^2*N.
%
% param a Matlab structure containing the following fields:
%
% param.verbose : 0 no log, 1 print main steps, 2 print all steps.
% By default, it is 1.
% param.lowmemory : use less memory. By default, it is 1.
%
% Reference: shuman2013windowed
%
% Url: https://epfl-lts2.github.io/gspbox-html/doc/operators/gsp_gwft.html
% Copyright (C) 2013-2016 Nathanael Perraudin, Johan Paratte, David I Shuman.
% This file is part of GSPbox version 0.7.5
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% If you use this toolbox please kindly cite
% N. Perraudin, J. Paratte, D. Shuman, V. Kalofolias, P. Vandergheynst,
% and D. K. Hammond. GSPBOX: A toolbox for signal processing on graphs.
% ArXiv e-prints, Aug. 2014.
% http://arxiv.org/abs/1408.5781
% Author : Nathanael Perraudin
% Testing: test_gwft
% Optional input arguments
if nargin<4, param=struct; end
if ~isfield(param, 'verbose'), param.verbose=1 ; end
if ~isfield(param, 'lowmemory'), param.lowmemory=1 ; end
if ~isfield(G,'U')
error(['GSP_GWFT: You need first to compute the Fourier basis. ',...
'You can do it with the function gsp_compute_fourier_basis']);
end
if sum(G.U(:,1)<eps(2))
error(['GSP_GWFT: The current implementation of this function is ',...
'not working for disconnected graphs'])
end
Nf = size(f,2);
if iscell(g)
g = gsp_igft(G,g{1}(G.e));
end
if isa(g, 'function_handle')
g = gsp_igft(G,g(G.e));
end
if ~param.lowmemory
% Compute the Frame into a big matrix
Frame=gsp_gwft_frame_matrix(G,g,param);
C=Frame'*f;
C=reshape(C,G.N,G.N,Nf);
else
% Compute the translate of g
ghat=G.U'*g;
Ftrans=sqrt(G.N)*G.U*(repmat(ghat,1,G.N).*G.U');
C=zeros(G.N);
for jj = 1:Nf
for ii=1:G.N
C(:,ii,jj)=(repmat(1./G.U(:,1),1,G.N) .* ...
G.U.*repmat(Ftrans(:,ii),1,G.N))'*f(:,jj);
end
end
end