function [coarse_approximations,prediction_errors]=gsp_pyramid_analysis(Gs,signal,num_levels,param)
%GSP_PYRAMID_ANALYSIS Compute the graph pyramid transform coefficients
% Usage: [coarse_approximations,prediction_errors]=gsp_pyramid_analysis(Gs,signal,num_levels);
% [coarse_approximations,prediction_errors]=gsp_pyramid_analysis(Gs,signal,num_levels,param);
%
% Input parameters:
% Gs : A multiresolution sequence of graph structures, including the idx parameters tracking the subsampling pattern.
% signal : Graph signal to analyze.
% num_levels : Number of levels in the pyramid transform.
% Output parameters:
% coarse_approximations : Cell array with the coarse approximations at each level.
% prediction_errors : Cell array with the prediction errors at each level.
%
% 'gsp_pyramid_analysis(Gs,signal,num_levels)' computes
% the graph pyramid transform coefficients of a signal f.
%
% param is a structure containing optional arguments including
%
% param.regularize_epsilon : Interpolation parameter.
% param.h_filters : A cell array of graph spectral filters. If just
% one filter is included, it is used at every level of the pyramid.
% Default
%
% h(x) = 0.5 / ( 0.5 + x)
%
% Please read the documentation of GSP_FILTER_ANALYSIS for other
% optional arguments.
%
% See also: gsp_graph_multiresolution gsp_pyramid_synthesis
% gsp_pyramid_cell2coeff gsp_pyramid_analysis_single
%
% Demo: gsp_demo_pyramid
%
% References:
% D. I. Shuman, M. J. Faraji, and P. Vandergheynst. A framework for
% multiscale transforms on graphs. arXiv preprint arXiv:1308.4942, 2013.
%
%
%
% Url: https://epfl-lts2.github.io/gspbox-html/doc/operators/gsp_pyramid_analysis.html
% Copyright (C) 2013-2016 Nathanael Perraudin, Johan Paratte, David I Shuman.
% This file is part of GSPbox version 0.7.5
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% If you use this toolbox please kindly cite
% N. Perraudin, J. Paratte, D. Shuman, V. Kalofolias, P. Vandergheynst,
% and D. K. Hammond. GSPBOX: A toolbox for signal processing on graphs.
% ArXiv e-prints, Aug. 2014.
% http://arxiv.org/abs/1408.5781
% Author: David I Shuman, Nathanael Perraudin
% Date: 26 November 2015
% Testing : test_pyramid
% Read input parameters and check that inputs have the correct sizes
if nargin < 4
param = struct;
end
if length(signal) ~= Gs{1}.N
error('The signal to analyze should have the same dimension as the first graph');
end
if num_levels >= length(Gs)
error('Not enough graphs provided to compute that many levels of the graph Laplacian pyramid');
end
if ~isfield(param,'h_filters')
h_filters=cell(num_levels,1);
for ii=1:num_levels
h_filters{ii}=@(x) .5./(.5+x);
end
elseif length(param.h_filters)==1
h_filters=cell(num_levels,1);
for ii=1:num_levels
h_filters{ii}=param.h_filters;
end
elseif length(param.h_filters)==num_levels
h_filters=param.h_filters;
else
error('param.h_filters should be a cell array of length 1 or num_levels');
end
% Compute the pyramid transform
coarse_approximations=cell(num_levels+1,1);
coarse_approximations{1}=signal;
prediction_errors = cell(num_levels,1);
for ii=1:num_levels
[coarse_approximations{ii+1},prediction_errors{ii}] = ...
gsp_pyramid_analysis_single( Gs{ii}, ...
coarse_approximations{ii}, Gs{ii+1}.mr.idx, h_filters{ii}, param);
end
end