function [x,y] = gsp_twospirals(N, degrees, start, noise)
%GSP_TWOSPIRALS Generate "two spirals" dataset with N instances
% Usage: gsp_twospirals(N, degrees, start, noise);
% gsp_twospirals(N, degrees, start);
% gsp_twospirals(N, degrees);
% gsp_twospirals(N);
% gsp_twospirals();
%
% Input arguments:
% N : Number of points (default 2000)
% degrees : The length of the spirals in degree (default 570)
% start : how far from the origin the spirals start, in degrees (default 90)
% noise : Noise level (default 0.2)
%
% Output arguments:
% x : Position of the points
% y : label
%
% Note that for noise=0, there is no noise and at noise=1 the spirals
% will start overlapping
%
% This function is adaptated from:
% http://stackoverflow.com/questions/16146599/create-artificial-data-in-matlab
% and
% http://stackoverflow.com/questions/5837572/generate-a-random-point-within-a-circle-uniformly
%
% Example:
%
% [x,y] = gsp_twospirals();
% figure();
% plot(x(y>0,1),x(y>0,2),'xr');
% hold on
% plot(x(y<=0,1),x(y<=0,2),'ob');
% hold off
%
% See also:
%
% Url: https://epfl-lts2.github.io/gspbox-html/doc/pointsclouds/gsp_twospirals.html
% Copyright (C) 2013-2016 Nathanael Perraudin, Johan Paratte, David I Shuman.
% This file is part of GSPbox version 0.7.5
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% If you use this toolbox please kindly cite
% N. Perraudin, J. Paratte, D. Shuman, V. Kalofolias, P. Vandergheynst,
% and D. K. Hammond. GSPBOX: A toolbox for signal processing on graphs.
% ArXiv e-prints, Aug. 2014.
% http://arxiv.org/abs/1408.5781
% Date: 15 August 2015
% Adaptated by: Nathanael Perraudin
if nargin < 1
N = 2000;
end
if nargin < 2
degrees = 570;
end
if nargin < 3
start = 90;
end
if nargin < 4
noise = 0.2;
end
deg2rad = (2*pi)/360;
start = start * deg2rad;
N1 = floor(N/2);
N2 = N-N1;
n = start + sqrt(rand(N1,1)) * degrees * deg2rad;
d1 = [-cos(n).*n + rand(N1,1)*noise sin(n).*n+rand(N1,1)*noise zeros(N1,1)];
n = start + sqrt(rand(N1,1)) * degrees * deg2rad;
d2 = [cos(n).*n+rand(N2,1)*noise -sin(n).*n+rand(N2,1)*noise ones(N2,1)];
data = [d1;d2];
x = data(:,1:2);
y = data(:,3);
end