Gnew = gsp_graph_sparsify(G,epsilon);
G | Graph structure or Laplacian matrix |
epsilon | Sparsification parameter |
This function sparsifies a graph using Spielman-Srivastava algorithm. Note that epsilon should be between \(1/\sqrt(N)\) and \(1\).
Example:
epsilon = 0.5; param.distribute = 1; nnparam.k = 20; param.nnparam = nnparam; G = gsp_sensor(256,param); G2 = gsp_graph_sparsify(G,epsilon); figure(1) gsp_plot_graph(G); title('Original graph') figure(2) gsp_plot_graph(G2); title('Sparsified graph')
D. A. Spielman and N. Srivastava. Graph sparsification by effective resistances. SIAM Journal on Computing, 40(6):1913--1926, 2011.
M. Rudelson. Random vectors in the isotropic position. Journal of Functional Analysis, 164(1):60--72, 1999.
M. Rudelson and R. Vershynin. Sampling from large matrices: An approach through geometric functional analysis. Journal of the ACM (JACM), 54(4):21, 2007.