PROJ_B2 - Projection onto a L2-ball
Usage
sol=proj_b2(x, ~, param)
[sol, infos]=proj_b2(x, ~, param)
Output parameters
sol |
Solution. |
info |
Structure summarizing informations at convergence |
Description
proj_b2(x,~,param) solves:
\begin{equation*}
sol = arg \min_z ||x - z||_2^2 \hspace{1cm} s.t. \hspace{1cm} \|y - A z\|_2 <= \epsilon
\end{equation*}
Remark: the projection is the proximal operator of the indicative function of
\(||y - A z||_2 < \epsilon\). So it can be written:
\begin{equation*}
prox_{f, \gamma }(x) \hspace{1cm} where \hspace{1cm} f= i_c(\|y - A z\|_2 <= \epsilon)
\end{equation*}
param is a Matlab structure containing the following fields:
- param.y : measurements (default: 0).
- param.A : Forward operator (default: Id).
- param.At : Adjoint operator (default: Id).
- param.epsilon : Radius of the L2 ball (default = 1e-3).
- param.tight : 1 if A is a tight frame or 0 if not (default = 0)
- param.nu : bound on the norm of the operator A (default: 1), i.e.
\begin{equation*}
\|A x\|^2 \leq \nu \|x\|^2
\end{equation*}
- param.tol : tolerance for the projection onto the L2 ball (default: 1e-3) . The algorithms
stops if
\begin{equation*}
\frac{\epsilon}{1-tol} \leq \|y - A z\|_2 \leq \frac{\epsilon}{1+tol}
\end{equation*}
- param.maxit : max. nb. of iterations (default: 200).
- param.method : is the method used to solve the problem. It can be 'FISTA' or
- 'ISTA'. By default, it's 'FISTA'.
- param.verbose : 0 no log, 1 a summary at convergence, 2 print main
steps (default: 1)
info is a Matlab structure containing the following fields:
- info.algo : Algorithm used
- info.iter : Number of iteration
- info.time : Time of execution of the function in sec.
- info.final_eval : Final evaluation of the function
- info.crit : Stopping critterion used
- info.residue : Final residue
Rem: The input "~" is useless but needed for compatibility issue.
References:
M. Fadili and J. Starck.
Monotone operator splitting for optimization problems in sparse
recovery.
In Image Processing (ICIP), 2009 16th IEEE International
Conference on, pages 1461--1464. IEEE, 2009.