GRADIENT_DESCENT - Gradient descent using the forward backward algorithmUsagesol = gradient_descent(x_0,F, param); sol = gradient_descent(x_0,F); [sol,info] = gradient_descent(...); Input parameters
Output parameters
Descriptiongradient_descent solves:
\begin{equation*}
sol = arg \min_x \sum_i f_1(x) \hspace{1cm} for \hspace{1cm} x\in R^N
\end{equation*}
where x are the optimization variables. F is a cell array of structure object. Each structure represent one function to be minimized. They all contains a field F{ii}.eval that is a implicite function to evaluate the corresponding function and a field F{ii}.grad that is another implicite function to compute the gradient of the function. Please, specify also, the Lipschitz constant of the gradient in F{ii}.beta. |