PPXA - Parallel Proximal algorithm

Program code:

function [sol, info] = ppxa(x_0, F, param)
%PPXA Parallel Proximal algorithm
%   Usage: sol = ppxa(x_0, F, param);
%          sol = ppxa(x_0, F);
%          [sol, infos] = ppxa(...); 
%
%   Input parameters:
%         x_0   : Starting point of the algorithm
%         F     : Array of function to minimize
%         param : Optional parameter
%   Output parameters:
%         sol   : Solution
%         info  : Structure summarizing informations at convergence
%
%   PPXA, derived from the Douglas-Rachford algorithm, solves
% 
%      sol = argmin sum(W_i*f_i(x))
%
%   for x in R^N, where x is the variable and x_0 is the starting point.
%
%   F is a cellarray of structures representing functions. All of them
%   should contains at least two fields. F{ii}.eval to evaluate the
%   function and F{ii}.prox to compute the proximal operator of the
%   function.
%
%   param a Matlab structure containing solver paremeters. See the
%   function SOLVEP for more information. Additionally it contains those
%   aditional fields:  
%
%    param.W : the weight (all equal by default)
%
%    param.lambda*: is the weight of the update term. It is kind of a
%     timestep for the proximal operators. (Warning it should not be confused
%     with gamma, the time step for gradient descent part). By default it
%     is set to 0.99. Do not change this parameter unless you know what you
%     do.
%
%   See also:  solvep sdmm admm generalized_forward_backward
%
%   References:
%     P. Combettes and J. Pesquet. Proximal splitting methods in signal
%     processing. Fixed-Point Algorithms for Inverse Problems in Science and
%     Engineering, pages 185--212, 2011.
%     
%
%   Url: https://epfl-lts2.github.io/unlocbox-html/doc/solver/ppxa.html

% Copyright (C) 2012-2016 Nathanael Perraudin.
% This file is part of UNLOCBOX version 1.7.4
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

% Author:  Nathanael Perraudin
% Date: Oct 19 2012
% Testing : test_solver

param.algo = 'PPXA';
[sol, info] = solvep(x_0,F,param);

end


% function [sol, info, objective] = ppxa(x_0, F, param)
% %PPXA Parallel Proximal algorithm
% %   Usage: sol = ppxa(x_0, F, param);
% %          sol = ppxa(x_0, F);
% %          [sol, infos, objective] = ppxa(...); 
% %
% %   Input parameters:
% %         x_0   : Starting point of the algorithm
% %         F     : Array of function to minimize
% %         param : Optional parameter
% %   Output parameters:
% %         sol   : Solution
% %         info  : Structure summarizing informations at convergence
% %         objective: vector (evaluation of the objective function each iteration)
% %
% %   `ppxa`, derived from the Douglas-Rachford algorithm, solves
% % 
% %   .. sol = argmin sum(W_i*f_i(x))
% %
% %   .. math::  sol = \min_x \sum_i W_i f_i(x)
% %
% %   for *x* in $R^N$, where *x* is the variable and *x_0* is the starting point.
% %
% %   * *F* is a cellarray of structures representing functions containing 
% %     operators inside and eventually the norm. The prox: *F{i}.prox* and 
% %     the function: *F{i}.eval* are defined in the same way as in the 
% %     Forward-backward and Douglas-Rachford algorithms
% %
% %   * *param* a Matlab structure containing the following fields:
% %
% %     General parameters:
% %
% %     * *param.W* : the weight (all equal by default)
% %
% %     * *param.tol* : is stop criterion for the loop. The algorithm stops if
% %
% %       ..  (  n(t) - n(t-1) )  / n(t) < tol,
% %      
% %       .. math:: \frac{  n(t) - n(t-1) }{ n(t)} < tol,
% %
% %       where  $n(t) = \sum W_i*f_i(x)$ is the objective function at iteration *t*
% %       by default, `tol=10e-4`.
% %
% %     * *param.maxit* : is the maximum number of iteration. By default, it is 200.
% % 
% %     * *param.verbose* : 0 no log, 1 print main steps, 2 print all steps.
% %
% %     * *param.lambda* : is the weight of the update term.
% %
% %     * *param.gamma* : convergence parameter (default 1)
% %
% %     * *param.abs_tol* : If activated, this stopping critterion is the
% %       objective function smaller than *param.tol*. By default 0.
% %
% %
% %   info is a Matlab structure containing the following fields:
% %
% %   * *info.algo* : Algorithm used
% %
% %   * *info.iter* : Number of iteration
% %
% %   * *info.time* : Time of exectution of the function in sec.
% %
% %   * *info.final_eval* : Final evaluation of the objectivs functions
% %
% %   * *info.crit* : Stopping critterion used 
% %
% %   * *info.rel_norm* : Relative norm at convergence 
% %
% %
% %   See also:  sdmm, admm, generalized_forward_backward
% %
% %   Demos:  demo_ppxa
% %
% %   References:  combettes2011proximal
% 
% % Author:  Nathanael Perraudin
% % Date: Oct 19 2012
% 
% % Start the time counter
% t1 = tic;
% 
% % test the evaluate function
% [F] = test_eval(F);
% 
% % number of functions
% m = size(F, 2);
% 
%     % Optional input arguments
%     if nargin < 3, param = struct; end
% 
%     if ~isfield(param, 'gamma'), param.gamma = 1; end
%     if ~isfield(param, 'tol'), param.tol = 10e-4; end
%     if ~isfield(param, 'abs_tol'), param.abs_tol = 0; end
%     if ~isfield(param, 'maxit'), param.maxit = 200; end
%     if ~isfield(param, 'verbose'), param.verbose = 1; end
%     if ~isfield(param, 'lambda'), param.lambda = 0.99; end
%     if ~isfield(param, 'W'), param.W = ones(m, 1) / m; end
% 
%     
%     W=param.W;
%     
%     
%    % Reshape x if vector line
%     if (size(W, 2) > size(W, 1))
%         W = W';
%     end
%     
%     test_gamma_ppxa(param.gamma);
%     test_sum(W);
%     
%     % Create a table of scructure containing data
%     data = [];
%     for ii = 1:m
%         data(ii).y = x_0;     %#ok<AGROW>
%         data(ii).p = zeros(size(x_0));     %#ok<AGROW>
%     end
%     
% 
%     x = w_sum(W, data, 'y');
% 
%     
%     % outerloop
%     curr_norm = 0;
%     for ii = 1:m
%        curr_norm = F{ii}.eval(x) + curr_norm;
%     end
%     [~, ~, prev_norm, iter, objective, ~] = convergence_test(curr_norm);
%     
%     while 1
%         
%         if param.verbose >= 2
%             fprintf('Iteration %i:\n', iter);
%         end
%         
%         % parallel proximal
%         % compute updated prox
%         for ii = 1:m
%             data(ii).p = F{ii}.prox(data(ii).y, param.gamma);%#ok<AGROW>
%         end
%         pn = w_sum(W,data,'p');
% 
% 
% 
%         % update y
%         
%         for ii = 1:m
%             data(ii).y  = data(ii).y + param.lambda * (2*pn - x - data(ii).p); %#ok<AGROW>
%         end
% 
%         % update x
%         x = x + param.lambda * (pn - x);
%         
%         % update solution & relative norm
%         sol = x;
%         curr_norm = 0;
%         for ii = 1:m
%             curr_norm = F{ii}.eval(sol) + curr_norm;
%         end
%                 
%         [stop, rel_norm, prev_norm, iter, objective, crit] = convergence_test(curr_norm, prev_norm, iter, objective, param);
%         [x,param] = post_process(sol, iter, curr_norm, prev_norm, objective, param);
%         if stop
%             break;
%         end
%         if param.verbose >= 2
%             fprintf('Current objective function : %e \t relative norm : %e \n', curr_norm, rel_norm);
%         end
%         
%     end
%     
%     if param.verbose>=2
%         % Print norm
%         fprintf('\n Solution found:\n');
%         if param.abs_tol
%             fprintf(' Final norm: %e\n', curr_norm );
%         else
%             fprintf(' Final relative norm: %e\n', rel_norm );
%         end
%     
%     
%         % Stopping criterion
%         fprintf(' %i iterations\n', iter);
%         fprintf(' Stopping criterion: %s \n\n', crit);
%     elseif param.verbose>=1
%         fprintf('  Solution found: ||f|| = %e, rel_norm = %e, %s\n', ...
%                     curr_norm, rel_norm,crit);
%     end
%     
% info.algo = mfilename;
% info.iter = iter;
% info.final_eval = curr_norm;
% info.crit = crit;
% info.time = toc(t1);
% info.rel_norm = rel_norm;
% 
% end
% 
% 
% 
% function test_gamma_ppxa(gamma)
%     if gamma <= 0 
%         fprintf('Warning : gamma is not > 0\n');
%     end
% end
% 
% 
% function test_sum(W)
%     if (sum(W) > 1+eps) || (sum(W) < 1-eps)
%         fprintf('Warning : sum W is not equal to 1');
%     end
% end
% 
% function s = w_sum(w, data, l)
%     s = zeros(size(data(1)));
%     
%     if l == 'p'
%         for ii = 1:length(data)
%             s = s + w(ii) * data(ii).p;
%         end
%     elseif l == 'y'
%         for ii = 1:length(data)
%             s = s + w(ii) * data(ii).y;
%         end
%     else
%         error('Fatal error! Unknown field in data!')
%     end
% end