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Abstract

Nowadays the trend to solve optimization problems is to use specific algorithms rather than very gen-
eral ones. The UNLocBoX provides a general framework allowing the user to design his own algorithms.
To do so, the framework try to stay as close from the mathematical problem as possible. More precisely,
the UNLocBoX is a Matlab toolbox designed to solve convex optimization problem of the form

min
x∈C

K

∑
n=1

fn(x),

using proximal splitting techniques. It is mainly composed of solvers, proximal operators and demonstra-
tion files allowing the user to quickly implement a problem.
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1 Introduction
During your research, you have most likely faced the situation where you need to solve a convex optimiza-
tion problem. Maybe you were trying to find an optimal combination of parameters, you were transforming
some process into something automatic or, even more simply, your algorithm was equivalent to solving
convex problem. In this situation, you usually face a dilemma: you need a specific algorithm to solve your
problem, but you do not want to spend hours writing it. And if you are not an expert in convex optimization
and you do not want to spend weeks learning it.

If you are in this situation, you probably want to have a go with the UNLocBoX, a MATLAB convex
optimization toolbox based on proximal splitting methods1. This tool allows you to efficiently deal with
convex problems thanks to a quick and simple implementation. For instance, to solve the problem

argmin
x
‖Ax− y‖2

2 +‖x‖1

where ‖ · ‖2, ‖ · ‖1 denote the `2 and the `1 norms, you will write

f1.eval = @(x) norm( A*x - y )^2;
f1.grad = @(x) 2 * A’ * ( A*x -y );
f1.beta = 2 * norm(A)^2;

f2.eval = @(x) norm( x, 1 );
f2.prox = @(x,T) prox_l1( x, T );

sol = solvep( x0, {f1,f2} );

In this case, the UNLocBoX will automatically select a suitable solver for your problem and compute the
answer with the chosen method. The UNLocBoX supports an unlimited number of convex functions and
constraints. As you saw in the previous example, it only requires gradients for differentiable functions,
proximal operators2 for non-smooth functions and projections for hard constraints. For efficient implemen-
tation, many proximal operators and projections are already provided with the toolbox. This allows a great
freedom for the range of solvable problems and also a quick implementation.

The UNLocBoX possesses a framework well suited for complex convex optimization problem with a
extensive list of useful proximal and projection operator, solver and other utility functions. However it is
not a complete tool that you can use blindly without knowing anything about the magic inside the "black"
box. If this is what you’re looking for, try for instance CVX. Otherwise (or if CVX can not handle your
problem), the UNLocBoX provides you a very good compromise between a fast implementation and a very
high customizability.

The documentation of the UNLocBoX is complete, meaning that every single function is documented.
Even if it is not perfect, it has improved significantly with time and we expect it to continue to do so. You
can find it online at http://unlocbox.sourceforge.net/doc. Everything is also periodically
updated into a big PDF file.

In this document, you will find the basic concepts and the structure of the UNLocBoX along with the
traditional "installation instructions". This includes some reminders about convex optimization and proxi-
mal splitting methods. For those of you, who starts with convex optimization, we will provide a sufficient
amount of selected literature on the subject to help you learn about it. If you just need a quick intro-
duction to the UNLocboX, a tutorial can be found at https://lts2.epfl.ch/unlocbox/notes/
unlocbox-note-008.pdf. Finally, if you use the UNLocBoX, please cite [?].

1It has recently been ported to python as the PyUNLocBoX.
2If you do not know what a proximal operator is, do not worry. We will provide a basic introduction with some references to help

you.
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2 Literature
to be done

To continue further learning about the UNLocBoX you should now read the tutorial https://lts2.
epfl.ch/unlocbox/notes/unlocbox-note-008.pdf.

3 Installation and initialization
First, download the latest version for your operating system on https://lts2.epfl.ch/unlocbox/
download.php. Then extract the archive in the directory of your choice. Finally, to start the toolbox,
just run the function init_unlocbox.m at the root of the UNLocBoX directory. You can also work with the
development version by cloning the git repository at:

https://github.com/nperraud/unlocbox.git

3.1 Dependencies
• Some functions of the UNLocBoX depend on the LTFAT toolbox (mostly demonstration). You can

download it at

https://github.com/epfl-lts2/unlocbox.

• To solve graph related convex optimization problems, you can use the GSPBox. You can download
it at

https://lts2research.epfl.ch/gsp.

3.2 GPU computation
If your system support it, usage of the GPU processor for some of the computations can reduce considerably
the running time of the optimization algorithms. For numerous applications, it is worth using the GPU to
optimize speed. However, keep in mind that the UNLocBoX does not provide optimized code. For high-
performance or large-scale data, you may need to use another language than MATLAB.

To use the GPU with UnLocBox, you first need a compatible NVIDIA graphic card. Then you need to
install and configure CUDA, available at: http://developer.nvidia.com/cuda-downloads.
Once this is done you can set the global variable GLOBAL_useGPU into the script init_unlocbox to 1. This
will enable the permanent use of the GPU for the TV proximal operator. The toolbox will then automatically
use the GPU if it is supported. GPU computation is under development.

For now, only the TV proximal operators use the GPU. However, if you know what you are doing, you
might want to push your data problem onto the GPU to avoid big data transfers between the CPU and the
GPU. In this case, you should be able to run the UNLocBoX. The script demo_gpu presented in the demos
compares the efficiency of the different methods. Below is a sample of results obtained with Intel-i7 2.4Ghz
processor and a NVIDIA GeForce GT 650M graphic card.

Computation time with the GPU: 15.3013
Computation time with the CPU: 26.5361
Computation time all on the GPU: 11.9943

4 Structure of the UNLocBoX
The toolbox is composed of the following functions

• Solvers : the core of the toolbox. It contains most of the recent techniques, like forward-backward
(FISTA), Douglas-Rachford, PPXA, ADMM, SDMM and others.

• Proximal operators: many pre-defined proximal operators help the user to quickly solve many stan-
dard problems. The toolbox also includes projection operators to handle hard constraint.

• Demo files: help the user to start with the toolbox.
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• Sample signals: mostly used in the demonstration files.

• Utility functions: some useful functions.

OCTOBER 3, 2017 3/16
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5 Problems of interest
The UNLocBoX is designed to solve convex optimization problems of the form

min
x∈RN

f1(x)+ f2(x), (1)

or more generally

min
x∈RN

K

∑
n=1

fn(x), (2)

where the fi are lower semi-continuous convex functions from RN to (−∞,+∞]. We assume lim‖x‖2→∞

{
∑

K
n=1 fn(x)

}
=

∞ and the fi have non-empty domains, where the domain of a function f is given by

dom f := {x ∈ Rn : f (x)<+∞}.

In problem (2), and when both f1 and f2 are smooth functions, gradient descent methods can be used to
solve (1); however, gradient descent methods cannot be used to solve (1) when f1 and/or f2 are not smooth.
In order to solve such problems more generally, we implement several algorithms including the forward-
backward algorithm [?]- [?] and the Douglas-Rachford algorithm [?, ?]- [?].3

Both the forward-backward and Douglas-Rachford algorithms fall into the class of proximal splitting
algorithms. The term proximal refers to their use of proximity operators, which are generalizations of
convex projection operators. The proximity operator of a lower semi-continuous convex function f : RN →
R is defined by

prox f (x) := argmin
y∈RN

{
1
2
‖x− y‖2

2 + f (y)
}
. (3)

Note that the minimization problem in (3) has a unique solution for every x ∈ RN , so prox f : RN → RN is
well-defined. The proximity operator is a useful tool because (see, e.g., [?, ?]) x∗ is a minimizer in (1) if
and only if for any γ > 0,

x∗ = proxγ( f1+ f2)(x
∗). (4)

The term splitting refers to the fact that the proximal splitting algorithms do not directly evaluate the
proximity operator proxγ( f1+ f2)(x), but rather try to find a solution to (4) through sequences of computations
involving the proximity operators proxγ f1(x) and proxγ f2(x) separately. The recent survey [?] provides
an excellent review of proximal splitting algorithms used to solve (1) and related convex optimization
problems.

6 Solvers
The UNLocBoX toolbox is composed of many solvers. We categorize them into 2 different groups.
First, there are specific solvers that minimize only two functions (Forward backward, Douglas Rachford,
ADMM,...). Those are usually more efficient. Second, there are general solvers that are more general but
less efficient (Generalized forward backward, PPXA, SDMM,...). Not all possible solvers are included into
the UNLocBoX. However it offers a general framework, where you can add you own solvers.

In general a solver takes three kinds of inputs: an initialization point x0, the functions to be minimized
and an optional structure of parameters. As a rule into the UNLocBoX, we use the following convention.
The initialization point is always the first argument (except for SDMM), then comes the functions and
finally the optional structure of parameters.

3In fact, the toolbox implements generalized versions of these algorithms that can solve problems with sums of a general number
of such functions, but for simplicity, we discuss here the simplest case of two functions.
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6.1 Defining functions
Each function fk(x) is modeled as a structure containing different fields: eval, prox, grad, beta. For
a function f, the field f.eval is a Matlab function handle that takes as input the optimization variables x
and returns the value f (x). Then the field f.prox is another function handle that takes as input a vector x
along with a positive real number τ and returns the vector proxτ f (x). In MATLAB, we write:

1 f1.prox = @(x, T) prox_f1(x, T)

where prox_f1(x, T) can be a standard MATLAB function that solves the problem proxT f1(x) given
in eq. (3)). In the same way, f.grad is a handle of a function that takes as input the optimization variables
x and returns the vector ∇ f (x). In Matlab, write:

1 f.grad = @(x) grad_f(x)

where grad_f(x) returns the value of ∇ f (x). Finally the field beta contains the Lipschitz constant of
the gradient. A function f has a β -Lipschitz-continuous gradient ∇ f if

‖∇ f (x)−∇ f (y)‖2 6 β‖x− y‖2 ∀x,y ∈ RN , (5)

where β > 0.
For instance to define the function f (x) = 5‖x− y‖2

2, you would write:

1 tau = 5;
2 f.eval = @(x) tau * norm(x);
3 f.grad = @(x) 2 * tau * (x - y);
4 f.beta = 2 * tau;

If the function is not smooth, or for another reason, you prefer to use the proximal operator, you would
write:

1 tau = 5;
2 f.eval = @(x) tau * norm(x);
3 paramf.y = y;
4 f.prox = @(x,T) prox_l2( x, tau*T , paramf );

Here we use a proximal operator available in the UNLocBoX, but you can also provide your personal
function.

6.2 Selecting a solver
The UNLocBoX contains a general solving function called solvep. For many problems, it can be used
blindly. This function will compute the time-step for you and select a compatible algorithm with your
problem. To minimize the sum of the functions f1, f2, f3, write in MATLAB:

1 sol = solvep(x_0, {f1, f2, f3});

If your problem becomes more complex to solve, you can select manually the solver or write a specific one
for your problem. In many situation, this last option may be a good choice. Thanks to the framework of the
UNLocBoX, this should not be too painful. Below is a detailed example of a solver.

1 function s = demo_forward_backward_alg()
2 %DEMO_FORWARD_BACKWARD_ALG Demonstration to define a personal solver
3 % Usage : param.algo = demo_forward_backward_alg();
4 %
5 % This function returns a structure containing the algorithm. You can
6 % lauch your personal algorithm with the following::
7 %
8 % param.algo = demo_forward_backward_alg();
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9 % sol = solvep(x0, {f1, f2}, param);
10 %
11

12 % This function returns a structure with 4 fields:
13 % 1) The name of the solver. This is used to select the solvers.
14 s.name = 'DEMO_FORWARD_BACKWARD';
15 % 2) A method to initialize the solver (called at the beginning)
16 s.initialize = @(x_0, fg, Fp, param) ...
17 forward_backward_initialize(x_0,fg,Fp,param);
18 % 3) The algorithm itself (called at each iterations)
19 s.algorithm = @(x_0, fg, Fp, sol, s, param) ...
20 forward_backward_algorithm(fg, Fp, sol, s, param);
21 % 4) Post process method (called at the end)
22 s.finalize = @(x_0, fg, Fp, sol, s, param) sol;
23 % The variables here are
24 % x_0 : The starting point
25 % fg : A single smooth function
26 % (if fg.beta == 0, no smooth function is specified)
27 % Fp : The non smooth functions (a cell array of structure)
28 % param: The structure of optional parameter
29 % s : Intern variables or the algorithm
30 % sol : Current solution
31 end
32

33 function [sol, s, param] = forward_backward_initialize(x_0,fg,Fp,param)
34

35 % Handle optional parameter. Here we need a variable lambda.
36 if ~isfield(param, 'lambda'), param.lambda=1 ; end
37

38 % All intern variables are stored into the structure s
39 s = struct;
40 % *sol* is set to the initial points
41 sol = x_0;
42

43 if numel(Fp)>1
44 error(['This solver can not be used to optimize',...
45 ' more than one non smooth function']);
46 end
47

48 if ~fg.beta
49 error('Beta = 0! This solver requires a smooth term.');
50 end
51

52 end
53

54 function [sol, s] = forward_backward_algorithm(fg, Fp, sol, s, param)
55 % The forward backward algorithm is done in two steps
56 % 1) x_n = prox_{f, gamma} ( sol - gamma grad_fg(sol) )
57 s.x_n = Fp{1}.prox( sol - param.gamma*fg.grad(sol), param.gamma);
58 % 2) Updates
59 % sol = sol + lambda * (x_n -sol)
60 sol = sol + param.lambda * (s.x_n - sol);
61 end

6.3 Optional parameters
The optional parameters for solvers are all contained into a structure param. Different functions might
need different parameters, but most of them are common. Table 6.3 presents a list of recurrent optional
parameters for solvers and their default values.

6.4 Plug-ins: how to tune your algorithm
It is sometimes useful to be able to visualize your current solution every iterations or to be able to change the
time-step when the algorithm is already launched. To solve this problem, the user can use plug-in functions
that will be evaluated at the end of each iteration.

We first present a plug-in to change the time step at each iteration. It can be used with:
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Parameter Explanation Default value
param.tol This parameter is used to define the stopping criterion of

the problem. The algorithm stops if

f (t)− f (t−1)
f (t)

< tol

where f (t) is the function to be minimized at iteration t.
tol ∈ R∗+

10−2

param.abs_tol This boolean parameter activates an alternative stopping
criterion. The algorithm stops if

f (t)< tol

where f (t) is the function to be minimized at iteration t
and tol ∈ R∗+ is given by param.tol

0

param.use_dual If activated, use the norm of the dual variable instead of
the evaluation of the function itself for stopping crite-
rion. This is used in ADMM and SDMM for instance.
To use it, the algorithm needs to store the dual variable in
s.dual_var.

0

param.maxit The maximum number of iterations 200
param.verbose Log parameter: 0 no log, 1 a summary at convergence, 2

print main steps
1

param.gamma step-size parameter γ . This constant should satisfy: γ ∈
[ε,2/β − ε], for ε ∈ (0,min{1,1/β}). If not set, it is
automatically computed.

1

param.algo Algorithm to solve the problem (See the example above)

Table 1: Optional parameter for solvers

1 param.do_ts=@(x) log_decreasing_ts(x, gamma_in, gamma_fin, nit);
2 sol = solvep(x0, {f1,f2}, param);

Here x is a structure that contains the following field

• x.sol : The current solution.

• x.iter : The current number of iteration.

• x.curr_eval : The current evaluation of the objective function.

• x.prev_eval : The previous evaluation of the objective function.

• x.gamma : The current time-step.

• x.objective : The objective function over all iterations

Below, you can find the code of this plug-in as an example.

1 function gamma = log_decreasing_ts(x, gamma_in, gamma_fin, nit)
2 %LOG_DECREASING_TS Log decreasing timestep for UNLCOBOX algorithm
3 % Usage gamma = log_decreasing_ts(x, gamma_in, gamma_fin, nit);
4 %
5 % Input parameters:
6 % x : Structure of data
7 % gamma_in : Initial timestep
8 % gamma_fin : Final timestep
9 % nit : Number of iteration for the decrease

10 %
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11 % Output parameters:
12 % gamma : Timestep at iteration t
13 %
14 % This plug-in computes a new timestep at each iteration. It makes a log
15 % decreasing timestep from *gamma_in* to *gamma_fin* in *nit* iterations.
16 % To use this plugin, define::
17 %
18 % param.do_ts = @(x) log_decreasing_ts(x, gamma_in, gamma_fin, nit);
19 %
20 % in the structure of optional argument of the solver.
21

22 if x.iter > nit
23 gamma = gamma_fin;
24 else
25 ts = gamma_in./linspace(1,gamma_in/gamma_fin,nit);
26 gamma = ts(x.iter);
27 end
28 end

As a second plug-in, we present a function that can display the objective function evolution trough
iteration. This can be very useful for debugging. In MATLAB, write:

1 fig = figure(100);
2 param.do_sol = @(x) plot_objective(x, fig);
3 sol = solvep(x0, {f1,f2}, param);

1 function [ sol ] = plot_objective(info_iter, fig)
2 %PLOT_OBJECTIVE Plot objective function over iterations
3 % Usage [ sol ] = plot_objective( info_iter, fig );
4 %
5 % Input parameters:
6 % info_iter : Structure of info
7 % fig : Figure
8 %
9 % Output parameters:

10 % sol : Current solution
11 %
12 % This plug-in displays the image every iterations of an algorithm. To use
13 % the plug-in just define::
14 %
15 % fig = figure(100);
16 % param.do_sol = @(x) plot_objective(x, fig);
17 %
18 % In the structure of optional argument of the solver.
19

20 % select the figure
21 if info_iter.iter<2
22 figure(fig);
23 end
24

25 %
26 title(['Current it: ', num2str(info_iter.iter),' Curr obj: ', ...
27 num2str(info_iter.curr_norm)]);
28 semilogy(info_iter.objective); title('Objective function')
29 drawnow;
30

31 % return the solution
32 sol=info_iter.sol;
33

34 end

6.5 Returned arguments
The solver returns 3 arguments

• sol : The minimizer of the problem
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• info : General information (summarized in Table 6.5)

• objective : the evolution of the objective function through iterations

Field Explanation
info.algo Algorithm used
info.iter Number of iterations
info.time Time of execution of the function in sec.
info.final_eval Final evaluation of the objective function
info.crit Stopping criterion used see table 6.5
info.rel_norm Relative norm at convergence

Table 2: Information returned by the solver

Criterion Explanation
TOL_EPS Tolerance achieved
ABS_TOL Objective function below the tolerance
MAX_IT Maximum number of iterations
USER Stop by the user "ctrl + D" in the command window.
-- Other

Table 3: Stopping criteria

7 Proximal operators
In the UNLocBoX, a variety of proximal operators are already implemented. All proximal operator func-
tions take as input three parameters: x, lambda, param. First, x is the initial signal. Then lambda is
the weight of the objective function. Finally, param is a Matlab structure that containing a set of optional
parameters.

prox f (x) := argmin
y∈RN

(
1
2
‖x− y‖2

2 +λ f (y)
)
.

The optional parameters for proximal operators are contained into a structure param. Every function
takes its own inputs. Table 7 presents a list of recurrent optional parameters for proximal operators.

The proximal operators usually return 2 arguments

• sol : the minimizer of the problem

• info : general information, see table 6.5

7.1 Constraints
If we would like to restrict the set of admissible functions to a subset C of RL, i.e. find the optimal solution
to (2) considering only solutions in C , we can use projection operator instead of proximal operators. Indeed
proximal operators are generalization of projections. For any nonempty, closed and convex set C ⊂RL, the
indicator function [?] of C is defined as

iC : RL→{0,+∞} : x 7→

{
0, if x ∈ C

+∞ otherwise.
, (6)

The corresponding proximity operator is given by the projection onto the set C :

PC (y) = arg min
x∈RL

{
1
2
‖y− x‖2

2 + iC (x)
}

= arg min
x∈C

{
‖y− x‖2

2
}
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Parameter Explanation Default value
param.tol This parameter is used to define the stopping criterion of

the problem. The algorithm stops if

f (t)− f (t−1)
f (t)

< tol

where f (t) is the function to be minimized at iteration t.
tol ∈ R∗+

10−2

param.abs_tol This boolean parameter activates an alternative stopping
criterion. The algorithm stops if

f (t)< tol

where f (t) is the function to be minimized at iteration t
and tol ∈ R∗+ is given by param.tol

0

param.maxit The maximum number of iterations 200
param.verbose Log parameter: 0 no log, 1 a summary at convergence, 2

print main steps
1

param.gamma step-size parameter γ . This constant should satisfy: γ ∈
[ε,2/β − ε], for ε ∈]0,min{1,1/β}[.

1

param.A forward linear operator, usually used to compute the prox
of f(Ax)

Id

param.At adjoint linear operator, usually used to compute the prox
of f(Ax)

Id

param.tight Flag for A tight 1
param.y shift, usually used to compute the prox of f(x-y) 0

Table 4: Optional parameter for solvers

Such restrictions are called constraints and can be given, e.g. by a set of linear equations that the solution
is required to satisfy.

8 Example
The problem Let’s suppose we have a noisy image with missing pixels. Our goal would be to find the
closest image to the original one. We begin first by setting up some assumptions about the problem.

Assumptions In this particular example, we firstly assume that we know the position of the missing pixels.
This can be the result of a previous process on the image or a simple assumption. Secondly, we assume that
the image is not special. Thus, it is composed of well delimited patches of colors. Thirdly, we suppose that
known pixels are subject to some Gaussian noise with a variance of ε .

Formulation of the problem At this point, the problem can be expressed in a mathematical form. We
will simulate the masking operation by a mask A. This first assumption leads to a constraint.

Ax = y

where x is the vectorized image we want to recover, y are the observe noisy pixels and A a linear operator
representing the mask. However due to the addition of noise this constraint is a little bit relaxed. We rewrite
it in the following form

‖Ax− y‖2 6 ε

Note that ε can be chosen equal to 0 to satisfy exactly the constraint. In our case, as the measurements are
noisy, we set ε to the standard deviation of the noise.
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Original image Noisy image Depleted image

Figure 1: This figure shows the image chosen for this example: the cameraman.

Using the prior assumption that the image has a small TV-norm (image composed of patch of color and
few degradee), we will express the problem as

argmin
x
‖x‖TV subject to ‖b−Ax‖2 6 ε (Problem I)

where b is the degraded image and A an linear operator representing the mask. ε is a free parameter that
tunes the confidence to the measurements. This is not the only way to define the problem. We could also
write:

argmin
x
‖b−Ax‖2 +λ‖x‖TV (Problem II)

with the first function playing the role of a data fidelity term and the second a prior assumption on the signal.
λ adjusts the tradeoff between measurement fidelity and prior assumption. We call it the regularization
parameter. The smaller it is, the more we trust the measurements and vice-versa. ε play a similar role as λ .
Note that there exist a bijection between the parameters λ and ε leading to the same solution. The bijection
function is not trivial to determine. Choosing between one or the other problem will affect the solvers and
the convergence rate.

Solving problem I The UNLocBoX solvers take as input functions with their proximity operator or with
their gradient. In the toolbox, functions are modelized with structure object with at least two fields. One
field contains an operator to evaluate the function and the other allows to compute either the gradient (in
case of differentiable function) or the proxitity operator ( in case of non differentiable functions). In this
example, we need to provide two functions:

• f1(x) = ||x||TV
The proximal operator of f1 is defined as:

prox f 1,γ(z) = argmin
x

1
2
‖x− z‖2

2 + γ‖z‖TV

This function is defined in Matlab using:

paramtv.verbose=1;
paramtv.maxit=50;
f1.prox=@(x, T) prox_tv(x, T, paramtv);
f1.eval=@(x) tv_norm(x);

This function is a structure with two fields. First, f1.prox is an operator taking as input x and T and
evaluating the proximity operator of the function (T plays the role of γ is the equation above). Sec-
ond, and sometime optional, f1.eval is also an operator evaluating the function at x.
The proximal operator of the TV norm is already implemented in the UNLocBoX by the function
prox_tv. We tune it by setting the maximum number of iterations and a verbosity level. Other pa-
rameters are also available (see documentation http://unlocbox.sourceforge.net/doc.
php).

OCTOBER 3, 2017 11/16

http://unlocbox.sourceforge.net/doc.php
http://unlocbox.sourceforge.net/doc.php


LTS2 - EPFL

– paramtv.verbose selects the display level (0 no log, 1 summary at convergence and 2 display all
steps).

– paramtv.maxit defines the maximum number of iteration.

• f2 is the indicator function of the set S defines by ||Ax−b||2 < ε . We define the proximity operator
of f2 as

prox f 2,γ(z) = argmin
x

1
2
‖x− z‖2

2 + iS(x),

with iS(x) is zero if x is in the set S and infinite otherwise. This previous problem has an identical
solution as:

argmin
z
‖x− z‖2

2 subject to ‖Az−by‖2 6 ε

It is simply a projection on the B2-ball. In matlab, we write:

param_proj.epsilon=epsilon;
param_proj.A=A;
param_proj.At=A;
param_proj.y=y;
f2.prox=@(x,T) proj_b2(x,T,param_proj);
f2.eval=@(x) eps;

The prox field of f2 is in that case the operator computing the projection. Since we suppose that the
constraint is satisfied, the value of the indicator function is 0. For implementation reasons, it is better
to set the value of the operator f2.eval to eps than to 0. Note that this hypothesis could lead to strange
evolution of the objective function. Here the parameter A and At are mandatory. Note that A = At,
since the masking operator can be performed by a diagonal matrix containing 1’s for observed pixels
and 0’s for hidden pixels.

At this point, a solver needs to be selected. The UNLocBoX contains many different solvers. You can
try them and observe the convergence speed. Just remember that some solvers are optimized for specific
problems. In this example, we present two of them forward_backward and douglas_rachford.
Both of them take as input two functions (they have generalization taking more functions), a starting point
and some optional parameters.

In our problem, both functions are not smooth on all points of the domain leading to the impossibility
to compute the gradient. In that case, solvers (such as forward backward) using gradient descent cannot be
used. As a consequence, we will use Douglas Rachford instead. In matlab, we write:

param.verbose=1;
param.maxit=100;
param.tol=10e-5;
param.gamma=1;
sol = douglas_rachford(y,f1,f2,param);

• param.verbose selects the display level (0 no log, 1 summary at convergence and 2 display all steps).

• param.maxit defines the maximum number of iteration.

• param.tol is stopping criterion for the loop. The algorithm stops if

n(t)−n(t−1)
n(t)

< tol,

where n(t) is the objective function at iteration t

• param.gamma defines the stepsize. It is a compromise between convergence speed and precision.
Note that if gamma is too big, the algorithm might not converge.

The solution is displayed in figure 2
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Problem I − Douglas Rachford

Figure 2: This figure shows the reconstructed image by solving problem I using Douglas Rachford algo-
rithm.

Problem II − Forward Backward Problem II − Douglas Rachford

Figure 3: This figure shows the reconstructed image by solving problem II.

Solving problem II Solving problem II instead of problem I can be done with a small modification of the
previous code. First we define another function as follow:

param_l2.A=A;
param_l2.At=A;
param_l2.y=y;
param_l2.verbose=1;
f3.prox=@(x,T) prox_l2(x,lambda*T,param_l2);
f3.grad=@(x) 2*lambda*A(A(x)-y);
f3.eval=@(x) lambda*norm(A(x)-y,’fro’);

The structure of f3 contains a field f3.grad. In fact, the l2 norm is a smooth function. As a consequence the
gradient is well defined on the entire domain. This allows using the forward backward solver. However, we
can in this case also use the Douglas Rachford solver. For this we have defined the field f3.prox.

We remind that forward backward will not use the field f3.prox and Douglas Rachford will not use the
field f3.grad. The solvers can be called by:

sol21 = forward_backward(y,f1,f3,param);

Or:

sol22 = douglas_rachford(y,f3,f1,param);

These two solvers will converge (up to numerical errors) to the same solution. However, convergence speed
might be different. As we perform only 100 iterations with both of them, we do not obtain exactly the same
result. Results is shown in figure 3.

Remark: The parameter lambda (the regularization parameter) and epsilon (The radius of the l2 ball)
can be chosen empirically. Some methods allow to compute those parameters. However, this is far beyond
the scope of this tutorial.
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Appendix: example’s code

1 %% Initialisation
2 clear all;
3 close all;
4

5 % Loading toolbox
6 global GLOBAL_useGPU;
7 init_unlocbox();
8

9 verbose=2; % verbosity level
10

11 %% Load an image
12

13 % Original image
14 im_original=cameraman;
15

16 % Displaying original image
17 imagescgray(im_original,1,'Original image');
18

19 %% Creation of the problem
20

21 sigma_noise = 20/255;
22 im_noisy=im_original+sigma_noise*randn(size(im_original));
23

24 % Create a matrix with randomly 50 % of zeros entry
25 p=0.5;
26 matA=rand(size(im_original));
27 matA=(matA>(1-p));
28 % Define the operator
29 A=@(x) matA.*x;
30

31 % Depleted image
32 y=matA.*im_noisy;
33

34 % Displaying noisy image
35 imagescgray(im_noisy,2,'Noisy image');
36

37 % Displaying depleted image
38 imagescgray(y,3,'Depleted image');
39

40 %% Setting the proximity operator
41

42 % setting the function f1 (norm TV)
43 paramtv.useGPU = GLOBAL_useGPU; % Use GPU
44 paramtv.verbose = verbose-1;
45 paramtv.maxit = 50;
46 f1.prox=@(x, T) prox_tv(x, T, paramtv);
47 f1.eval=@(x) tv_norm(x);
48

49 % setting the function f2
50 param_proj.epsilon = sqrt(sigma_noise^2*length(im_original(:))*p);
51 param_proj.A = A;
52 param_proj.At = A;
53 param_proj.y = y;
54 param_proj.verbose = verbose-1;
55 f2.prox=@(x,T) proj_b2(x,T,param_proj);
56 f2.eval=@(x) eps;
57

58 % setting the function f3
59 lambda = 10;
60 param_l2.A = A;
61 param_l2.At = A;
62 param_l2.y = y;
63 param_l2.verbose = verbose-1;
64 param_l2.tight = 0;
65 param_l2.nu = 1;
66 f3.prox=@(x,T) prox_l2(x,lambda*T,param_l2);
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67 f3.grad=@(x) 2*lambda*A(A(x)-y);
68 f3.eval=@(x) lambda*norm(A(x)-y,'fro')^2;
69

70 %% Solving problem I
71

72 % setting different parameters for the simulation
73 param.verbose = verbose; % display parameter
74 param.maxit = 100; % maximum number of iterations
75 param.tol = 1e-5; % tolerance to stop iterating
76 param.gamma = 1 ; % Convergence parameter
77 % solving the problem with Douglas Rachord
78 sol = douglas_rachford(y,f1,f2,param);
79

80 %% Displaying the result
81 imagescgray(sol,4,'Problem I - Douglas Rachford');
82

83 %% Solving problem II (forward backward)
84 param.gamma=0.5/lambda; % Convergence parameter
85 param.tol=1e-5;
86 % solving the problem with Douglas Rachord
87 sol21 = forward_backward(y,f1,f3,param);
88

89 %% Displaying the result
90 imagescgray(sol21,5,'Problem II - Forward Backward');
91

92 %% Solving problem II (Douglas Rachford)
93 param.gamma=0.5/lambda; % Convergence parameter
94 sol22 = douglas_rachford(y,f3,f1,param);
95

96 %% Displaying the result
97 imagescgray(sol22,6,'Problem II - Douglas Rachford');
98

99 %% Close the UNLcoBoX
100 close_unlocbox();
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