
UNLOCBOX TUTORIAL

UNLOCBOX: A SIMPLE TUTORIAL
MATLAB CONVEX OPTIMIZATION TOOLBOX

Lausanne - November 2014
PERRAUDIN Nathanaël – LTS2 - EPFL

1 Introduction
Welcome to the tutorial of the UNLocBoX. In this document, we provide an example application that uses the
basic concepts of the toolbox. Here you will also find some tricks that may be very useful. You can find an
introduction and more detailed documentation in the userguide, available at http://unlocbox.sourceforge.net/
notes/unlocbox-note-002.pdf

This toolbox is designed to solve convex optimization problems of the form:

arg min
x∈RN

(f1(x)+ f2(x)) ,

or more generally

arg min
x∈RN

K

∑
n=1

fn(x),

where the fi are lower semi-continuous convex functions and x the optimization variables. For more de-
tails about the problems, please refer to the userguide (UNLocBoX-note-002) available on https://lts2.epfl.ch/
unlocbox/notes/unlocbox-note-002.pdf .

This toolbox is based on proximal splitting methods. Those methods cut the problem into smaller (and
easier) subproblems that can be solved in an iterative fashion. The UNLocBoX essentially consists of three
families of functions:

• Proximity operators: they solve small minimization problems and allow a quick implementation of many
composite problems.

• Solvers: generic minimization algorithms that can work with different combinations of proximity opera-
tors in order to minimize complex objective functions

• Demonstration files: examples to help you to use the toolbox

This toolbox is provided for free. We would be happy to receive comments, information about bugs or any
other kind of help in order to improve the toolbox.

2 A simple example: Image in-painting
Let’s suppose we have a noisy image with missing pixels. Our goal is simply to fill the unknown values in
order to reconstruct an image close to the original one. We first begin by setting up some assumptions about the
problem.

3 Assumptions
In this particular example, we firstly assume that we know the position of the missing pixels. This happens
when we know that a specific part of a photo is destroyed, or when we have sampled some of the pixels in
known positions and we wish to recover the rest of the image. Secondly, we assume that the image follows

2014 - LTS2 - EPFL 1/9

http://unlocbox.sourceforge.net/notes/unlocbox-note-002.pdf
http://unlocbox.sourceforge.net/notes/unlocbox-note-002.pdf
https://lts2.epfl.ch/unlocbox/notes/unlocbox-note-002.pdf
https://lts2.epfl.ch/unlocbox/notes/unlocbox-note-002.pdf

UNLOCBOX TUTORIAL

Original image

Figure 1: The original image provided by the toolbox. Use cameraman() function to access.

some standard distribution. For example, many natural images are known to have sharp edges and almost flat
regions (the extreme case would be the cartoon images with completely flat regions). Thirdly, we suppose that
known pixels are subject to some Gaussian noise with a variance of ε .

Noisy image

Figure 2: Noisy image.

2014 - LTS2 - EPFL 2/9

UNLOCBOX TUTORIAL

Measurements

Figure 3: Measurements. 50 percent of the pixels have been removed.

4 Formulation of the problem
At this point, the problem can be expressed in a mathematical form. We will simulate the masking operation
with an operator A. This first assumption leads to a constraint.

Ax = y

where x is the vectorized image we want to recover, y are the observed noisy pixels and A a linear operator
selecting the known pixels. However due to the addition of noise this constraint can be a little bit relaxed and
we rewrite it in the following form

‖Ax− y‖2 6
√

Nε

where N is the number of known pixels. Note that ε can be chosen to be equal to 0 so that the equality y = Ax is
satisfied. In our case, as the measurements are noisy, we set ε to be the expected value of the norm of the noise
(standard deviation times square root of number of measurements).

We use as a prior assumption that the image has a small total variation norm (TV-norm). (The TV-norm
is the l1-norm of the gradient of x.) On images, this norm is low when the image is composed of patches of
color and few "degradee" (gradients). This is the case for most of natural images. To summarize, we express
the problem as

argmin
x
‖x‖TV subject to ‖Ax− y‖2 6

√
Nε (Problem I)

Note that if the amount of noise is not known, epsilon as a free parameter that tunes the confidence to the
measurements. However, this is not the only way to define the problem. We could also write:

argmin
x
‖Ax− y‖2

2 +λ‖x‖TV (Problem II)

2014 - LTS2 - EPFL 3/9

UNLOCBOX TUTORIAL

with the first function playing the role of a data fidelity term and the second a prior assumption on the signal.
λ adjusts the tradeoff between measurement fidelity and prior assumption. We call it the regularization
parameter. The smaller it is, the more we trust the measurements and conversely. ε plays a similar role as λ .

We have presented two ways to formulate the problem. The reader should keep in mind that choosing
between one or the other problem will affect the choice of the solver and the convergence rate. With experience,
one should be able to know in advance which problem will lead to the best solver.

Note that there exists a bijection between the parameters λ and ε leading both problems to the same solution.
Unfortunately, the bijection function is not trivial to determine.

Once your problem is well defined, we need to provide a list of functions to the UNLocBoX solver. (For
example, in Problem 2, the functions are ‖Ax− y‖2

2 and :math:‘ lambda |x|_{TV}‘.) Every function is modeled
by a MATLAB structure containing some special fields. We separate the functions in two different types:
differentiable and non differentiable. For differentiable function, the user needs to fill the following fields: *
func.eval : An anonymous function that evaluate the function * func.grad : An anonymous function that evaluate
the gradient * func.beta : An upper bound on the Lipschitz constant of the gradient

For instance, the function ‖Ax− y‖2
2 is defined in MATLAB by:

fsmooth.grad = @(x) 2 * A' * (A*x - y);
fsmooth.eval = @(x) norm(A*x - y)^2;
fsmooth.beta = 2 * norm(A)^2;

The Lipschitz constant of a the gradient is defined as:

min
β

s.t ∀x1,x2 ∈ RN we have ‖∇ f (x1)−∇ f (x2)‖2 6 β‖x1− x2‖2

When the function is not differentiable, the field .beta is dropped and .grad is replaced by the field .prox that
contains an anonymous function for the proximity operator (They will be explained in more details the following
section.

ftv.prox = @(x, T) prox_tv(x, T * lambda, paramtv); ftv.eval = @(x) lambda * tv_norm(x);

5 Proximity operators
The proximity operator of a lower semi-continuous convex function f is defined by:

proxλ f (z) = argmin
x

1
2
‖x− z‖2

2 +λ f (x)

Proximity operators minimize a function without going too far from a initial point. They can be thought or
assimilated as de-noising operators. Because of the l2-term in the minimization problem, proximity operators
perform a regularized minimization of the function f . However, applied iteratively, they lead to the minimization
of this function. For x∗ the minimizer of the function f , it is obvious that:

x∗ = prox f (x∗) = argmin
x

1
2
‖x− x∗‖2

2 + f (x)

In a sense, proximity operators perform a regularized minimization of the function f . However, they also
provide a framework to handle constraints. Those can be inserted into the problem thanks to indicative functions.
These functions assert if x belong to a set C. They only have two output values: 0 if x is in the set and ∞

otherwise:

iC : RL→{0,+∞} : x 7→


0, if x ∈C

+∞ otherwise

2014 - LTS2 - EPFL 4/9

UNLOCBOX TUTORIAL

The solution of the proximity operator of this function has to be in the set C, otherwise the iC(x) = ∞. Moreover,
since it also minimizes ‖x− z‖2

2, it will select the closest point to z. As a result the proximity operators of
indicator functions are projections.

It is important to keep in mind the equivalence between constraints and indicative functions. This is the trick
that allows to use hard constraint with the UNLocBoX as it cannot directly handle them. The constraints will
thus be inserted in the form of indicative functions.

6 Solving problem I
The UNLocBoX is based on proximal splitting techniques for solving convex optimization problems. These
techniques divide the problem into smaller problems that are easier to solve. Topically, each function will
compose a sub-problem that will be solved by its proximity operator (or gradient step). In the particular case of
problem (I), the solver will iteratively, first minimize a little bit the TV norm and second perform the projection
on the fidelity term B2-ball. (The B2-ball is the space of point x satisfying ‖Ax−y‖6

√
Nε). To solve problem

(I), we minimize two functions:

• The TV norm: f1(x) = λ ||x||TV The proximity operator of f1 is given by:

prox f 1,λ (x) = argmin
z

1
2
‖x− z‖2

2 +λ‖z‖TV

In MATLAB, the function is defined by the following code:

paramtv.verbose = 1;
paramtv.maxit = 50;
f1.prox = @(x, T) prox_tv(x, T * lambda, paramtv);
f1.eval = @(x) lambda * tv_norm(x);

This function is a structure with two fields. First, f1.prox is an operator taking as input x and T and
evaluating the proximity operator of the function (T has be stay a free weight for the solver. it is going to
be replaced by the timestep later). Second, f1.eval is also an operator evaluating the function at x.

The proximal operator of the TV norm is already implemented in the UNLocBoX by the function
prox_tv. We tune it by setting the maximum number of iterations and a verbosity level. Other pa-
rameters are also available (see documentation).

– paramtv.verbose selects the display level (0 no log, 1 summary at convergence and 2 display all
steps).

– paramtv.maxit defines the maximum number of iteration for this proximity operator.

Not that for problem (I), lambda can be dropped or set to 1. This parameter will be used when solving
problem (II).

• f2 is the indicator function of the set S defined by ||Ax− y||2 < ε The proximity operator of f2 is:

prox f 2,γ(z) = argmin
x

1
2
‖x− z‖2

2 + iS(x),

with iS(x) is zero if x is in the set S and infinite otherwise. Under some technical assumption, this previous
problem has an identical solution as:

argmin
z
‖x− z‖2

2 subject to ‖Az− y‖2 6 ε

It is simply a projection on the B2-ball (The B2-ball is the set of all points satisfying ‖Ax− y‖2 < ε). In
MATLAB, we write:

2014 - LTS2 - EPFL 5/9

UNLOCBOX TUTORIAL

param_proj.epsilon = epsilon;
param_proj.A = A;
param_proj.At = A;
param_proj.y = y;
f2.prox=@(x,T) proj_b2(x,T,param_proj);
f2.eval=@(x) eps;

The prox field of f2 is in that case the operator computing the projection. Since we suppose that the
constraint is satisfied, the value of the indicator function is 0. For implementation reasons, it is better
to set the value of the operator f2.eval to eps than to 0. Note that this hypothesis could lead to strange
evolution of the objective function. Here the parameter A and At are mandatory. Please notice here the
two following lines:

param_proj.A = A;
param_proj.At = A;

In fact we consider here the masking operator A as a diagonal matrix containing 1’s for observed pixels
and 0’s for hidden pixels. As a consequence: A = At. In MATLAB, one easy way to implement this
operator is to use:

A = @(x) matA .* x;

with matA the mask. In a compressed sensing problem for instance, you would define:

param_proj.A = @(x) Phi * x;
param_proj.At = @(x) Phi' * x;

where Phi is the sensing matrix!

At this point, we are ready to solve the problem. The UNLocBoX contains many different solvers and also
a universal one that will select a suitable method for the problem. To use it, just write:

sol = solvep(y,{f1,f2});

You can also use a specific solver for your problem. In this tutorial, we present two of them forward_backward
and douglas_rachford. Both of them take as input two functions (they have generalization taking more
functions), a starting point and some optional parameters.

In our problem, both functions are not smooth on all points of the domain leading to the impossibility to
compute the gradient. In that case, solvers (such as forward_backward) using gradient descent cannot be
used. As a consequence, we will use douglas_rachford instead. In MATLAB, we write:

param.verbose = 2;
param.maxit = 50;
param.tol = 10e-5;
param.gamma = 0.1;
fig = figure(100);
param.do_sol=@(x) plot_image(x,fig);
sol = douglas_rachford(y,f1,f2,param);

Or in an equivalent manner (this second way is recommended):

param.method = "douglas_rachford"
sol = solvep(y,{f1,f2},param);

• param.verbose selects the display level (0 no log, 1 summary at convergence and 2 display all steps).

2014 - LTS2 - EPFL 6/9

UNLOCBOX TUTORIAL

• param.maxit defines the maximum number of iteration.

• param.tol is stopping criterion for the loop. The algorithm stops if

n(t)−n(t−1)
n(t)

< tol,

where n(t) is the objective function at iteration t

• param.gamma defines the step-size. It is a compromise between convergence speed and precision. Note
that if gamma is too big, the algorithm might not converge. By default, this parameter is computed
automatically.

• Finally, the following line allows to display the current reconstruction of the image at each iteration:

param.do_sol=@(x) plot_image(x,fig);

Problem I - Douglas Rachford

Figure 4: This figure shows the reconstructed image by solving problem I using Douglas Rachford algorithm.

You can stop the simulation by typing "ctrl + d" in the consol. At the end of the next iteration, the algorithm
will stop and return the current solution.

7 Solving problem II
Solving problem II instead of problem I can be done with a small modification of the previous code. First we
define another function as follow:

f3.grad = @(x) 2*A(A(x) - y);
f3.eval = @(x) norm(A(x) - y, 'fro')^2;
f3.beta = 2;

2014 - LTS2 - EPFL 7/9

UNLOCBOX TUTORIAL

The structure of f3 contains a field f3.grad. In fact, the l2-norm is a smooth function. As a consequence the
gradient is well defined on the entire domain. This allows using the forward_backward solver that can be
called by:

param.method = "forward_backward"
sol21 = solvep(y,{f1,f2},param);

In this case, we can also use the douglas_rachford solver. To do so, we need to define the field f3.prox.
In general, this is not recommended because a gradient step is usually less computationally expensive than a
proximal operator:

param_l2.A = A;
param_l2.At = A;
param_l2.y = y;
param_l2.verbose = 1;
f3.prox = @(x,T) prox_l2(x, T, param_l2);
f3.eval = @(x) norm(A(x) - y, 'fro')^2;

param.method = "douglas_rachford"
sol22 = solvep(y, {f1,f3}, param);

We remind the user that forward_backward will not use the field f3.prox and douglas_rachford
will not use the field f3.grad.

These two solvers will converge (up to numerical error) to the same solution. However, convergence speed
might be different. As we perform only 100 iterations with both of them, we do not obtain exactly the same
result.

Problem II - Forward Backward

Figure 5: This figure shows the reconstructed image by solving problem II using the Forward Backward algo-
rithm.

Remark: The parameter lambda (the regularization parameter) and epsilon (The radius of the l2 ball) can be
chosen empirically. Some methods allow to compute those parameters. However, this is far beyond the scope
of this tutorial.

2014 - LTS2 - EPFL 8/9

UNLOCBOX TUTORIAL REFERENCES

Problem II - Douglas Rachford

Figure 6: This figure shows the reconstructed image by solving problem II using the Douglas Rachford algo-
rithm.

8 Conclusion
In this tutorial, the reader can observe that problem (II) is solved much more efficiently than problem (I).However,
writing the problem with a constraint (like problem (I)) often allow a much easier tuning of the parameters at
the cost of using a slower solver.

Only experience helps to know which formulation of a problem will lead to the best solver. Usually, forward
backward (FISTA) and ADMM are considered to be the best solvers.

Speed consideration are relative when using the UNLocBoX. Due to general implementation of the tool-
box, we estimate the overall speed between one and two times slower than an optimal algorithm cooked and
optimized for a special problem (in MATLAB).

Thanks for reading this tutorial
References: [?], [?]

References

2014 - LTS2 - EPFL 9/9

	Introduction
	A simple example: Image in-painting
	Assumptions
	Formulation of the problem
	Proximity operators
	Solving problem I
	Solving problem II
	Conclusion
	References

