function [ g,t ] = gsp_design_mexican_hat(G, Nf, param)
%GSP_DESIGN_MEXICAN_HAT Design the mexican hat filterbank
% Usage: g = gsp_design_mexican_hat(G, Nf, param);
% gsp_design_mexican_hat(G ,Nf);
% gsp_design_mexican_hat(G);
%
% Input parameters:
% G : Graph or upper bound on the Laplacian spectrum
% Nf : Number of filters to cover the interval [0,lmax] (default 6)
% param : Structure of optional parameters
% Output parameters:
% g : A cell array of filters
%
% This function return a array of filters designed to be mexican hat
% wavelet. The mexican hat wavelet is the second oder derivative of a
% Gaussian. Since we express the filter in the Fourier domain, we find:
%
% g_h(f) = f^2 * exp(-f^2)
%
% math: g_h(f) = f^2 * exp(-f^2)
%
% In our convention the eigenvalues of Laplacian are equivalent to the
% square of vertex frequencies: f = lambda^2.
%
% The low pass filter is given by
%
% g_l(f) = exp(-f^8)
%
% math: g_l(f) = exp(-f^8)
%
% param is an optional structure containing the following fields
%
% param.t*: vector of scale to be used (default: log scale)
% param.lpfactor*: lmin*=*lmax*/*lpfactor will be used to determine
% scales, then scaling function kernel will be created to fill the
% lowpass gap. (default 20)
% param.verbose*: verbosity level. 0 no log - 1 display warnings.
% (default 1)
% param.normalize*: normalize the wavelet by the factor sqrt{t}
% (default 0.)
%
% This function will compute the maximum eigenvalue of the laplacian. To
% be more efficient, you can precompute it using:
%
% G = gsp_estimate_lmax(G);
%
% Example:
%
% Nf = 8;
% G = gsp_sensor(100);
% G = gsp_estimate_lmax(G);
% g = gsp_design_mexican_hat(G, Nf);
% gsp_plot_filter(G,g);
%
% This function is inspired by the sgwt_toolbox.
%
% See also:
%
% Url: https://epfl-lts2.github.io/gspbox-html/doc/filters/gsp_design_mexican_hat.html
% Copyright (C) 2013-2016 Nathanael Perraudin, Johan Paratte, David I Shuman.
% This file is part of GSPbox version 0.7.5
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% If you use this toolbox please kindly cite
% N. Perraudin, J. Paratte, D. Shuman, V. Kalofolias, P. Vandergheynst,
% and D. K. Hammond. GSPBOX: A toolbox for signal processing on graphs.
% ArXiv e-prints, Aug. 2014.
% http://arxiv.org/abs/1408.5781
% Author: Nathanael Perraudin, David K. Hammond
% Date: 18 March 2014
if nargin < 3
param = struct;
end
if nargin < 2
Nf = 6;
end
if ~isfield(param,'lpfactor'), param.lpfactor = 20; end
if ~isfield(param,'verbose'), param.verbose = 1; end
if ~isfield(param,'normalize'), param.normalize = 0; end
if isstruct(G)
if ~isfield(G,'lmax')
if param.verbose
fprintf('GSP_DESIGN_MEXICAN_HAT has to compute lmax \n')
end
G = gsp_estimate_lmax(G);
end
lmax = G.lmax;
else
lmax = G;
end
lmin=lmax / param.lpfactor;
if ~isfield(param,'t')
param.t = gsp_wlog_scales(lmin, lmax, Nf-1);
end
if param.verbose
if length(param.t) ~= Nf - 1
warning(['GSP_KERNEL_MEXICAN_HAT: You have specified ',...
'more scales than Number of filter -1']);
end
end
t = param.t;
% High pass filter
gb=@(x) x.*exp(-x);
% low pass filter
gl = @(x) exp(-x.^4);
g = cell(Nf,1);
lminfac=.4*lmin;
g{1}=@(x) 1.2*exp(-1)*gl(x/lminfac);
for j=1:Nf-1
if param.normalize
g{j+1} = @(x) sqrt(t(j))*gb(t(j)*x);
else
g{j+1} = @(x) gb(t(j)*x);
end
end
end