This is where navigation should be.


GSP_KRON_REDUCE - Performs Kron reduction

Usage

Greduced=gsp_kron_reduce(G,keep_inds);
Lreduced=gsp_kron_reduce(L,keep_inds);

Input parameters

G Graph structure or graph Laplacian matrix.
keep_inds The set of indices to keep in the reduced graph.

Output parameters

Greduced The Kron-reduced graph structure or Laplacian.

Description

'gsp_kron_reduce(G,keep_inds)' performs Kron reduction:

\begin{equation*} {\cal L}_{reduced}={\cal L}_{{\cal V}_1,{\cal V}_1}-{\cal L}_{{\cal V}_1,{\cal V}_2} \left[{\cal L}_{{\cal V}_2,{\cal V}_2}\right]^{-1} {\cal L}_{{\cal V}_2,{\cal V}_1} \end{equation*}

If a matrix is given, then a matrix is returned

Example:

N = 64;
param.distribute = 1;
param.Nc = 5;
param.regular = 1;
G = gsp_sensor(N,param);
ind = 1:2:N;
Gnew = gsp_kron_reduction( G,ind );
figure;
subplot(121)
gsp_plot_graph(G);
title('Original graph');
subplot(122)
gsp_plot_graph(Gnew);
title('Kron reduction');
gsp_kron_reduce_1_1.png

Notes: may be able to speed this up with LAMG toolbox

References:

F. Dorfler and F. Bullo. Kron reduction of graphs with applications to electrical networks. Circuits and Systems I: Regular Papers, IEEE Transactions on, 60(1):150--163, 2013.