function [Greduced]=gsp_kron_reduce(G,keep_inds)
%GSP_KRON_REDUCE Performs Kron reduction
% Usage: Greduced=gsp_kron_reduce(G,keep_inds);
% Lreduced=gsp_kron_reduce(L,keep_inds);
%
% Input parameters:
% G : Graph structure or graph Laplacian matrix.
% keep_inds : The set of indices to keep in the reduced graph.
% Output parameters:
% Greduced : The Kron-reduced graph structure or Laplacian.
%
% 'gsp_kron_reduce(G,keep_inds)' performs Kron reduction:
%
% L_reduced = L_{V_1,V_1} - L_{V_1,V_2} * [L_{V_2,V_2}]^-1 * L_{V_2,V_1}
%
% If a matrix is given, then a matrix is returned
%
% Example:
%
% N = 64;
% param.distribute = 1;
% param.Nc = 5;
% param.regular = 1;
% G = gsp_sensor(N,param);
% ind = 1:2:N;
% Gnew = gsp_kron_reduction( G,ind );
% figure;
% subplot(121)
% gsp_plot_graph(G);
% title('Original graph');
% subplot(122)
% gsp_plot_graph(Gnew);
% title('Kron reduction');
%
% See also:
%
% Notes: may be able to speed this up with LAMG toolbox
%
% Demos:
%
% References:
% F. Dorfler and F. Bullo. Kron reduction of graphs with applications to
% electrical networks. Circuits and Systems I: Regular Papers, IEEE
% Transactions on, 60(1):150--163, 2013.
%
%
% Url: https://epfl-lts2.github.io/gspbox-html/doc/operators/gsp_kron_reduce.html
% Copyright (C) 2013-2016 Nathanael Perraudin, Johan Paratte, David I Shuman.
% This file is part of GSPbox version 0.7.5
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% If you use this toolbox please kindly cite
% N. Perraudin, J. Paratte, D. Shuman, V. Kalofolias, P. Vandergheynst,
% and D. K. Hammond. GSPBOX: A toolbox for signal processing on graphs.
% ArXiv e-prints, Aug. 2014.
% http://arxiv.org/abs/1408.5781
% Author : David I Shuman, Nathanael Perraudin.
% Date : 26 November 2016
% Testing: test_operators
if isstruct(G)
if ~strcmp(G.lap_type,'combinatorial')
error('Not implemented');
end
if G.directed
error('GSP_KRON_REDUCTION: this only work for undirected graphs.');
end
L = G.L;
else
L = G;
end
N=size(L,1);
if N~= size(L,2)
error('Graph Laplacian should be a square matrix');
end
elim_inds=setdiff(1:N,keep_inds);
Lreduced=L(keep_inds,keep_inds)-L(keep_inds,elim_inds)*(L(elim_inds,elim_inds)\L(elim_inds,keep_inds));
% Make the laplacian symetric if it is almost symetric!
if sum(sum(abs(Lreduced-transpose(Lreduced))))<eps*sum(sum(abs(Lreduced)))
Lreduced = (Lreduced+transpose(Lreduced))/2;
end
if isstruct(G)
Wnew = diag(diag(Lreduced)) - Lreduced;
Greduced = gsp_copy_graph_attributes(G,0);
Greduced.W = Wnew;
Greduced.type='Kron reduction';
Greduced = gsp_graph_default_parameters(Greduced);
Greduced.plotting.limits = G.plotting.limits;
Greduced.coords = G.coords(keep_inds,:);
else % return a Laplacian matrix if a Laplacian matrix was entered
Greduced=Lreduced;
end
end