function gsp_plot_signal_spectral(G,f_hat,param)
%GSP_PLOT_SIGNAL_SPECTRAL Plot a graph signal in the graph spectral domain
% Usage: gsp_plot_signal_spectral(G,signal);
% gsp_plot_signal_spectral(G,signal,param);
%
% Input parameters:
% G : Graph or laplacian eigenvalues
% f_hat : Graph signal in the spectral domain.
% param : Optional variable containing additional parameters.
% Output parameters:
% none
%
% 'gsp_plot_signal_spectral(G,signal)' plots a graph signal in the graph
% Fourier domain.
%
% Warning: to use this function, the Fourier basis of the graph should be
% first computed. You can do it with:
%
% G = gsp_full_eigen(G);
%
% Example:
%
% N = 32;
% G = gsp_path(N);
% G = gsp_compute_fourier_basis(G);
% f = sin((1:N)'*2*pi*4/N);
% fhat = gsp_gft(G,f);
% gsp_plot_signal_spectral(G,fhat);
%
% Additional parameters
% ---------------------
%
% param.highlight : Highlight one frequency component.
% param.plot_abs : Option to plot the absolute value of f_hat
%
% See also: gsp_plot_graph gsp_plot_signal
%
%
% Url: https://epfl-lts2.github.io/gspbox-html/doc/plotting/gsp_plot_signal_spectral.html
% Copyright (C) 2013-2016 Nathanael Perraudin, Johan Paratte, David I Shuman.
% This file is part of GSPbox version 0.7.5
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% If you use this toolbox please kindly cite
% N. Perraudin, J. Paratte, D. Shuman, V. Kalofolias, P. Vandergheynst,
% and D. K. Hammond. GSPBOX: A toolbox for signal processing on graphs.
% ArXiv e-prints, Aug. 2014.
% http://arxiv.org/abs/1408.5781
% Author : David I Shuman, Nathanael Perraudin
% Testing: test_plotting
% Read input parameters
if nargin < 3
param = struct;
end
if ~isfield(param, 'highlight'), param.highlight = 0; end
if ~isfield(param, 'plot_abs'), param.plot_abs = 1; end
if param.plot_abs
f_hat=abs(f_hat);
end
if isstruct(G)
E = G.e;
end
cla;
hold on;
stem(E,f_hat,'LineWidth',1)
if param.highlight>0
stem(E(highlight),f_hat(highlight),'filled','r','LineWidth',1);
end
tic_int=ceil(max(E)/10);
set(gca,'XTick',0:tic_int:ceil(max(E)));
set(gca,'color','none')
if sign(min(f_hat))>0
aymin = 0.9*min(f_hat);
else
aymin = 1.1*min(f_hat);
end
aymax = max(1.1*max(f_hat),1.1*min(f_hat)+eps);
axis([-.1 ceil(max(E)) aymin aymax]);
% set(gca,'fontsize',18)
box on;
hold off;
end